Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 120(2): 207-217, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30518816

RESUMO

BACKGROUND: Advanced cancer causes necrosis and releases damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs activate neutrophils, including generation of neutrophil extracellular traps (NETs), which are injurious, thrombogenic, and implicated in metastasis. We hypothesised that extracellular mitochondrial DNA (mtDNA) in ascites from patients with epithelial ovarian cancer (EOC) would correlate with worse outcomes. METHODS: Banked ascites supernatants from patients with newly diagnosed advanced EOC were analysed for mtDNA, neutrophil elastase, and activation of healthy donor neutrophils and platelets. TCGA was mined for expression of SELP and ELANE. RESULTS: The highest quartile of ascites mtDNA correlated with reduced progression-free survival (PFS) and a higher likelihood of disease progression within 12-months following primary surgery (n = 68, log-rank, p = 0.0178). NETs were detected in resected tumours. Ascites supernatants chemoattracted neutrophils, induced NETs, and activated platelets. Ascites exposure rendered neutrophils suppressive, based on abrogation of ex vivo stimulated T cell proliferation. Increased SELP mRNA expression correlated with worse overall survival (n = 302, Cox model, p = 0.02). CONCLUSION: In this single-centre retrospective analysis, ascites mtDNA correlated with worse PFS in advanced EOC. Mitochondrial and other DAMPs in ascites may activate neutrophil and platelet responses that facilitate metastasis and obstruct anti-tumour immunity. These pathways are potential prognostic markers and therapeutic targets.


Assuntos
Alarminas/genética , Carcinoma Epitelial do Ovário/genética , DNA Mitocondrial/genética , Armadilhas Extracelulares/genética , Idoso , Ascite/genética , Ascite/patologia , Plaquetas/metabolismo , Carcinoma Epitelial do Ovário/patologia , Armadilhas Extracelulares/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Elastase de Leucócito/genética , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Neutrófilos/metabolismo , Neutrófilos/patologia , Intervalo Livre de Progressão , Microambiente Tumoral/genética
2.
J Vis Exp ; (89)2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25045941

RESUMO

The lung is an interface where host cells are routinely exposed to microbes and microbial products. Alveolar macrophages are the first-line phagocytic cells that encounter inhaled fungi and other microbes. Macrophages and other immune cells recognize Aspergillus motifs by pathogen recognition receptors and initiate downstream inflammatory responses. The phagocyte NADPH oxidase generates reactive oxygen intermediates (ROIs) and is critical for host defense. Although NADPH oxidase is critical for neutrophil-mediated host defense1-3, the importance of NADPH oxidase in macrophages is not well defined. The goal of this study was to delineate the specific role of NADPH oxidase in macrophages in mediating host defense against A. fumigatus. We found that NADPH oxidase in alveolar macrophages controls the growth of phagocytosed A. fumigatus spores4. Here, we describe a method for assessing the ability of mouse alveolar macrophages (AMs) to control the growth of phagocytosed Aspergillus spores (conidia). Alveolar macrophages are stained in vivo and ten days later isolated from mice by bronchoalveolar lavage (BAL). Macrophages are plated onto glass coverslips, then seeded with green fluorescent protein (GFP)-expressing A. fumigatus spores. At specified times, cells are fixed and the number of intact macrophages with phagocytosed spores is assessed by confocal microscopy.


Assuntos
Aspergillus fumigatus/imunologia , Macrófagos Alveolares/imunologia , Microscopia Confocal/métodos , Animais , Macrófagos Alveolares/citologia , Macrófagos Alveolares/enzimologia , Camundongos , NADPH Oxidases/imunologia , Fagocitose , Esporos Fúngicos/imunologia
3.
Infect Immun ; 82(5): 1766-77, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24549323

RESUMO

NADPH oxidase is a crucial enzyme in antimicrobial host defense and in regulating inflammation. Chronic granulomatous disease (CGD) is an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates. Aspergillus species are ubiquitous, filamentous fungi, which can cause invasive aspergillosis, a major cause of morbidity and mortality in CGD, reflecting the critical role for NADPH oxidase in antifungal host defense. Activation of NADPH oxidase in neutrophils can be coupled to the release of proteins and chromatin that comingle in neutrophil extracellular traps (NETs), which can augment extracellular antimicrobial host defense. NETosis can be driven by NADPH oxidase-dependent and -independent pathways. We therefore undertook an analysis of whether NADPH oxidase was required for NETosis in Aspergillus fumigatus pneumonia. Oropharyngeal instillation of live Aspergillus hyphae induced neutrophilic pneumonitis in both wild-type and NADPH oxidase-deficient (p47(phox-/-)) mice which had resolved in wild-type mice by day 5 but progressed in p47(phox-/-) mice. NETs, identified by immunostaining, were observed in lungs of wild-type mice but were absent in p47(phox-/-) mice. Using bona fide NETs and nuclear chromatin decondensation as an early NETosis marker, we found that NETosis required a functional NADPH oxidase in vivo and ex vivo. In addition, NADPH oxidase increased the proportion of apoptotic neutrophils. Together, our results show that NADPH oxidase is required for pulmonary clearance of Aspergillus hyphae and generation of NETs in vivo. We speculate that dual modulation of NETosis and apoptosis by NADPH oxidase enhances antifungal host defense and promotes resolution of inflammation upon infection clearance.


Assuntos
Regulação Enzimológica da Expressão Gênica/imunologia , NADPH Oxidases/metabolismo , Neutrófilos/fisiologia , Aspergilose Pulmonar/enzimologia , Animais , Aspergillus fumigatus/fisiologia , Hifas/fisiologia , Inflamação , Camundongos , Camundongos Knockout , Alvéolos Pulmonares/citologia
4.
J Immunol ; 190(8): 4175-84, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23509361

RESUMO

Chronic granulomatous disease, an inherited disorder of the NADPH oxidase in which phagocytes are defective in the generation of superoxide anion and downstream reactive oxidant species, is characterized by severe bacterial and fungal infections and excessive inflammation. Although NADPH oxidase isoforms exist in several lineages, reactive oxidant generation is greatest in neutrophils, where NADPH oxidase has been deemed vital for pathogen killing. In contrast, the function and importance of NADPH oxidase in macrophages are less clear. Therefore, we evaluated susceptibility to pulmonary aspergillosis in globally NADPH oxidase-deficient mice versus transgenic mice with monocyte/macrophage-targeted NADPH oxidase activity. We found that the lethal inoculum was >100-fold greater in transgenic versus globally NADPH oxidase-deficient mice. Consistent with these in vivo results, NADPH oxidase in mouse alveolar macrophages limited germination of phagocytosed Aspergillus fumigatus spores. Finally, globally NADPH oxidase-deficient mice developed exuberant neutrophilic lung inflammation and proinflammatory cytokine responses to zymosan, a fungal cell wall-derived product composed principally of particulate ß-glucans, whereas inflammation in transgenic and wild-type mice was mild and transient. Taken together, our studies identify a central role for monocyte/macrophage NADPH oxidase in controlling fungal infection and in limiting acute lung inflammation.


Assuntos
Aspergillus fumigatus/imunologia , Macrófagos Alveolares/enzimologia , Macrófagos Alveolares/imunologia , Monócitos/enzimologia , Monócitos/imunologia , NADPH Oxidases/fisiologia , Doença Aguda , Animais , Aspergilose/enzimologia , Aspergilose/imunologia , Aspergilose/patologia , Predisposição Genética para Doença , Inflamação/enzimologia , Inflamação/microbiologia , Inflamação/prevenção & controle , Pulmão/enzimologia , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/microbiologia , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Zimosan/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...