Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Immunopathol Pharmacol ; 18(2): 255-68, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15888248

RESUMO

Inflammation is widely recognized as contributing to the pathology of acute and chronic neurodegenerative conditions. Microglial cells are pathologic sensors in the brain and activated microglia have been viewed as detrimental. Leukotriene, including cysteinyl leukotrienes (CysLTs) are suggested to be involved in brain inflammation and neurological diseases and ATP, by its receptors is a candidate for microglia activation. A23187 (10 microM) stimulated microglia to co-release CysLTs and [3H] adenine based purines ([3H] ABPs), mainly ATP. The biosynthetic production of CysLTs was abolished by 10 microM MK-886, an inhibitor of 5-lipoxygenase-activating protein activity. RT-PCR analysis showed that microglia expressed both CysLT1 / CysLT2 receptors, P2Y1ATP receptors and several members of the ATP binding cassette (ABC) transporters including MRP1, MRP4 and Pgp. The increase in [Ca2+]i elicited by LTD4 (0.1 microM) and 2MeSATP (100 microM), agonists for CysLT- and P2Y1-receptors, was abolished by the respective antagonists, BAYu9773 (0.5 microM) and suramin (50 microM). The stimulation of both receptor subtypes, induced a concomitant increase in the release of both [3H] ABPs and CysLTs that was blocked by the antagonists and significantly reduced by a cocktail of ABC transporter inhibitors, BAPTA/AM (intracellular Ca2+ chelator) and staurosporine (0.1 microM, PKC blocker). P2Y antagonist was unable to antagonise the effects of LTD4 and BAYu9773 did not reduce the effects of 2MeSATP. These data suggest that: i) the efflux of purines and cysteinyl-leukotrienes is specifically and independently controlled by the two receptor types, ii) calcium, PKC and the ABC transporter system can reasonably be considered common mechanisms underlying the release of ABPs and CysLTs from microglia. The blockade of P2Y1 or CysLT1/CysLT2 receptors by specific antagonists that abolished the raise in [Ca2+]i and drastically reduced the concomitant efflux of both compounds, as well as the effects of BAPTA and staurosporine support this hypothesis. In conclusion, the data of the present study suggest a cross talk between the purine and leukotriene systems in a possible autocrine/paracrine control of the microglia-mediated initiation and progression of an inflammatory response.


Assuntos
Cisteína/biossíntese , Leucotrienos/biossíntese , Proteínas de Membrana/metabolismo , Microglia/metabolismo , Purinas/biossíntese , Receptores de Leucotrienos/metabolismo , Receptores Purinérgicos P2/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Encéfalo/citologia , Cálcio/metabolismo , Células Cultivadas , Proteínas de Membrana/antagonistas & inibidores , Microglia/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2 , Ratos , Receptor Cross-Talk , Receptores Purinérgicos P2Y1
2.
Angiology ; 52 Suppl 2: S9-13, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11666128

RESUMO

Total triterpenic fraction of Centella asiatica (TTFCA) is effective in improving venous wall alterations in chronic venous hypertension and in protecting the venous endothelium. TTFCA is active on connective tissue modulation, improves the synthesis of collagen and other tissue proteins by modulating the action of fibroblasts in the vein wall, and stimulates collagen remodeling in and around the venous wall. This is due to the modulating action of TTFCA on fibroblasts as shown by experiments on the growth of human embryonal fibroblasts. TTFCA has a moderate in-vitro and in-vivo stimulating effect on collagen synthesis and, at higher dosages, an inhibition on the synthesis of collagen and acid mucopolysaccharides. Studies have indicated the role of TTFCA on the synthesis of specific venous wall elements by cell cultures of human embryonal fibroblasts. The tissue-stimulating action is shown by the increased collagen production independent from the stimulation of cell proliferation (this differentiates the action of TTFCA from cell growth factors). TTFCA is active on the microcirculation in venous and diabetic microangiopathy. Signs and symptoms of venous hypertension and edema are improved by treatment. The remodeling on collagen synthesis could be one of the possible mechanisms of actions of TTFCA in the remodeling of echolucent (soft; therefore, with risk of thrombosis and embolization) plaques at the carotid and femoral bifurcation. This compound is safe and well tolerated. In conclusion, several actions of TTFCA in vascular diseases makes the use of this compound very interesting in venous and arterial problems.


Assuntos
Angiopatias Diabéticas/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Triterpenos/uso terapêutico , Insuficiência Venosa/tratamento farmacológico , Doença Crônica , Tecido Conjuntivo/efeitos dos fármacos , Angiopatias Diabéticas/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Sistema Linfático/efeitos dos fármacos , Microcirculação/efeitos dos fármacos , Insuficiência Venosa/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...