Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 4, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172915

RESUMO

BACKGROUND: Dysregulated Notch signalling contributes to breast cancer development and progression, but validated tools to measure the level of Notch signalling in breast cancer subtypes and in response to systemic therapy are largely lacking. A transcriptomic signature of Notch signalling would be warranted, for example to monitor the effects of future Notch-targeting therapies and to learn whether altered Notch signalling is an off-target effect of current breast cancer therapies. In this report, we have established such a classifier. METHODS: To generate the signature, we first identified Notch-regulated genes from six basal-like breast cancer cell lines subjected to elevated or reduced Notch signalling by culturing on immobilized Notch ligand Jagged1 or blockade of Notch by γ-secretase inhibitors, respectively. From this cadre of Notch-regulated genes, we developed candidate transcriptomic signatures that were trained on a breast cancer patient dataset (the TCGA-BRCA cohort) and a broader breast cancer cell line cohort and sought to validate in independent datasets. RESULTS: An optimal 20-gene transcriptomic signature was selected. We validated the signature on two independent patient datasets (METABRIC and Oslo2), and it showed an improved coherence score and tumour specificity compared with previously published signatures. Furthermore, the signature score was particularly high for basal-like breast cancer, indicating an enhanced level of Notch signalling in this subtype. The signature score was increased after neoadjuvant treatment in the PROMIX and BEAUTY patient cohorts, and a lower signature score generally correlated with better clinical outcome. CONCLUSIONS: The 20-gene transcriptional signature will be a valuable tool to evaluate the response of future Notch-targeting therapies for breast cancer, to learn about potential effects on Notch signalling from conventional breast cancer therapies and to better stratify patients for therapy considerations.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
2.
JAMA Oncol ; 9(6): 815-824, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36892847

RESUMO

Importance: Aurora A kinase (AURKA) activation, related in part to AURKA amplification and variants, is associated with downregulation of estrogen receptor (ER) α expression, endocrine resistance, and implicated in cyclin-dependent kinase 4/6 inhibitor (CDK 4/6i) resistance. Alisertib, a selective AURKA inhibitor, upregulates ERα and restores endocrine sensitivity in preclinical metastatic breast cancer (MBC) models. The safety and preliminary efficacy of alisertib was demonstrated in early-phase trials; however, its activity in CDK 4/6i-resistant MBC is unknown. Objective: To assess the effect of adding fulvestrant to alisertib on objective tumor response rates (ORRs) in endocrine-resistant MBC. Design, Setting, and Participants: This phase 2 randomized clinical trial was conducted through the Translational Breast Cancer Research Consortium, which enrolled participants from July 2017 to November 2019. Postmenopausal women with endocrine-resistant, ERBB2 (formerly HER2)-negative MBC who were previously treated with fulvestrant were eligible. Stratification factors included prior treatment with CDK 4/6i, baseline metastatic tumor ERα level measurement (<10%, ≥10%), and primary or secondary endocrine resistance. Among 114 preregistered patients, 96 (84.2%) registered and 91 (79.8%) were evaluable for the primary end point. Data analysis began after January 10, 2022. Interventions: Alisertib, 50 mg, oral, daily on days 1 to 3, 8 to 10, and 15 to 17 of a 28-day cycle (arm 1) or alisertib same dose/schedule with standard-dose fulvestrant (arm 2). Main Outcomes and Measures: Improvement in ORR in arm 2 of at least 20% greater than arm 1 when the expected ORR for arm 1 was 20%. Results: All 91 evaluable patients (mean [SD] age, 58.5 [11.3] years; 1 American Indian/Alaskan Native [1.1%], 2 Asian [2.2%], 6 Black/African American [6.6%], 5 Hispanic [5.5%], and 79 [86.8%] White individuals; arm 1, 46 [50.5%]; arm 2, 45 [49.5%]) had received prior treatment with CDK 4/6i. The ORR was 19.6%; (90% CI, 10.6%-31.7%) for arm 1 and 20.0% (90% CI, 10.9%-32.3%) for arm 2. In arm 1, the 24-week clinical benefit rate and median progression-free survival time were 41.3% (90% CI, 29.0%-54.5%) and 5.6 months (95% CI, 3.9-10.0), respectively, and in arm 2 they were 28.9% (90% CI, 18.0%-42.0%) and 5.4 months (95% CI, 3.9-7.8), respectively. The most common grade 3 or higher adverse events attributed to alisertib were neutropenia (41.8%) and anemia (13.2%). Reasons for discontinuing treatment were disease progression (arm 1, 38 [82.6%]; arm 2, 31 [68.9%]) and toxic effects or refusal (arm 1, 5 [10.9%]; arm 2, 12 [26.7%]). Conclusions and Relevance: This randomized clinical trial found that adding fulvestrant to treatment with alisertib did not increase ORR or PFS; however, promising clinical activity was observed with alisertib monotherapy among patients with endocrine-resistant and CDK 4/6i-resistant MBC. The overall safety profile was tolerable. Trial Registration: ClinicalTrials.gov Identifier: NCT02860000.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Pessoa de Meia-Idade , Fulvestranto , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio , Aurora Quinase A/uso terapêutico , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
3.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682918

RESUMO

The Notch signaling pathway is an architecturally simple signaling mechanism, well known for its role in cell fate regulation during organ development and in tissue homeostasis. In keeping with its importance for normal development, dysregulation of Notch signaling is increasingly associated with different types of tumors, and proteins in the Notch signaling pathway can act as oncogenes or tumor suppressors, depending on the cellular context and tumor type. In addition to a role as a driver of tumor initiation and progression in the tumor cells carrying oncogenic mutations, it is an emerging realization that Notch signaling also plays a role in non-mutated cells in the tumor microenvironment. In this review, we discuss how aberrant Notch signaling can affect three types of cells in the tumor stroma-cancer-associated fibroblasts, immune cells and vascular cells-and how this influences their interactions with the tumor cells. Insights into the roles of Notch in cells of the tumor environment and the impact on tumor-stroma interactions will lead to a deeper understanding of Notch signaling in cancer and inspire new strategies for Notch-based tumor therapy.


Assuntos
Neoplasias , Receptores Notch , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral
4.
Sci Adv ; 7(34)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34407934

RESUMO

Organoids formed from human induced pluripotent stem cells (hiPSCs) could be a limitless source of functional tissue for transplantations in many organs. Unfortunately, fine-tuning differentiation protocols to form large quantities of hiPSC organoids in a controlled, scalable, and reproducible manner is quite difficult and often takes a very long time. Recently, we introduced a new approach of rapid organoid formation from dissociated hiPSCs and endothelial cells using microfabricated cell-repellent microwell arrays. This approach, when combined with real-time label-free Raman spectroscopy of biochemical composition changes and confocal light scattering spectroscopic microscopy of chromatin transition, allows for monitoring live differentiating organoids without the need to sacrifice a sample, substantially shortening the time of protocol fine-tuning. We used this approach to both culture and monitor homogeneous liver organoids that have the main functional features of the human liver and which could be used for cell transplantation liver therapy in humans.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Diferenciação Celular , Cromatina , Células Endoteliais , Humanos , Microscopia
5.
Oncogene ; 40(14): 2509-2523, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674749

RESUMO

Triple-negative breast cancer (TNBCs) account for 15-20% of all breast cancers and represent the most aggressive subtype of this malignancy. Early tumor relapse and progression are linked to the enrichment of a sub-fraction of cancer cells, termed breast tumor-initiating cells (BTICs), that undergo epithelial to mesenchymal transition (EMT) and typically exhibit a basal-like CD44high/CD24low and/or ALDH1high phenotype with critical cancer stem-like features such as high self-renewal capacity and intrinsic (de novo) resistance to standard of care chemotherapy. One of the major mechanisms responsible for the intrinsic drug resistance of BTICs is their high ALDH1 activity leading to inhibition of chemotherapy-induced apoptosis. In this study, we demonstrated that aurora-A kinase (AURKA) is required to mediate TGF-ß-induced expression of the SNAI1 gene, enrichment of ALDH1high BTICs, self-renewal capacity, and chemoresistance in TNBC experimental models. Significantly, the combination of docetaxel (DTX) with dual TGF-ß and AURKA pharmacologic targeting impaired tumor relapse and the emergence of distant metastasis. We also showed in unique chemoresistant TNBC cells isolated from patient-derived TNBC brain metastasis that dual TGF-ß and AURKA pharmacologic targeting reversed cancer plasticity and enhanced the sensitivity of TNBC cells to DTX-based-chemotherapy. Taken together, these findings reveal for the first time the critical role of AURKA oncogenic signaling in mediating TGF-ß-induced TNBC plasticity, chemoresistance, and tumor progression.


Assuntos
Aurora Quinase A/metabolismo , Neoplasias da Mama/genética , Plasticidade Celular/genética , Neoplasias da Mama/mortalidade , Feminino , Humanos , Transdução de Sinais , Análise de Sobrevida
6.
Breast Cancer Res ; 20(1): 105, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180881

RESUMO

BACKGROUND: Development of distant metastases involves a complex multistep biological process termed the invasion-metastasis cascade, which includes dissemination of cancer cells from the primary tumor to secondary organs. NOTCH developmental signaling plays a critical role in promoting epithelial-to-mesenchymal transition, tumor stemness, and metastasis. Although all four NOTCH receptors show oncogenic properties, the unique role of each of these receptors in the sequential stepwise events that typify the invasion-metastasis cascade remains elusive. METHODS: We have established metastatic xenografts expressing high endogenous levels of NOTCH3 using estrogen receptor alpha-positive (ERα+) MCF-7 breast cancer cells with constitutive active Raf-1/mitogen-associated protein kinase (MAPK) signaling (vMCF-7Raf-1) and MDA-MB-231 triple-negative breast cancer (TNBC) cells. The critical role of NOTCH3 in inducing an invasive phenotype and poor outcome was corroborated in unique TNBC cells resulting from a patient-derived brain metastasis (TNBC-M25) and in publicly available claudin-low breast tumor specimens collected from participants in the Molecular Taxonomy of Breast Cancer International Consortium database. RESULTS: In this study, we identified an association between NOTCH3 expression and development of metastases in ERα+ and TNBC models. ERα+ breast tumor xenografts with a constitutive active Raf-1/MAPK signaling developed spontaneous lung metastases through the clonal expansion of cancer cells expressing a NOTCH3 reprogramming network. Abrogation of NOTCH3 expression significantly reduced the self-renewal and invasive capacity of ex vivo breast cancer cells, restoring a luminal CD44low/CD24high/ERαhigh phenotype. Forced expression of the mitotic Aurora kinase A (AURKA), which promotes breast cancer metastases, failed to restore the invasive capacity of NOTCH3-null cells, demonstrating that NOTCH3 expression is required for an invasive phenotype. Likewise, pharmacologic inhibition of NOTCH signaling also impaired TNBC cell seeding and metastatic growth. Significantly, the role of aberrant NOTCH3 expression in promoting tumor self-renewal, invasiveness, and poor outcome was corroborated in unique TNBC cells from a patient-derived brain metastasis and in publicly available claudin-low breast tumor specimens. CONCLUSIONS: These findings demonstrate the key role of NOTCH3 oncogenic signaling in the genesis of breast cancer metastasis and provide a compelling preclinical rationale for the design of novel therapeutic strategies that will selectively target NOTCH3 to halt metastatic seeding and to improve the clinical outcomes of patients with breast cancer.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Receptor Notch3/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Autorrenovação Celular , Feminino , Humanos , Células MCF-7 , Camundongos Nus , Pessoa de Meia-Idade , Inoculação de Neoplasia , Interferência de RNA , Receptor Notch3/metabolismo , Análise de Sobrevida , Transplante Heterólogo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
7.
Oncol Rep ; 39(4): 1725-1730, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29393405

RESUMO

The discovery of human induced pluripotent stem cells (hiPSCs) is a promising advancement in the field of regenerative and personalized medicine. Expression of SOX2, KLF4, OCT4 and MYC transcription factors induces the nuclear reprogramming of somatic cells into hiPSCs that share striking similarities with human embryonic stem cells (hESCs). However, several studies have demonstrated that hESCs and hiPSCs could lead to teratoma formation in vivo, thus limiting their current clinical applications. Aberrant cell cycle regulation of hESCs is linked to centrosome amplification, which may account, for their enhanced chromosomal instability (CIN), and thus increase their tumorigenicity. Significantly, the tumor suppressor p53 plays a key role as a 'guardian of reprogramming', safeguarding genomic integrity during hiPSC reprogramming. Nevertheless, the molecular mechanisms leading to development of CIN during reprogramming and increased tumorigenic potential of hiPSCs remains to be fully elucidated. In the present study, we analyzed CIN in hiPSCs derived from keratinocytes and established that chromosomal and mitotic aberrations were linked to centrosome amplification, Aurora-A overexpression, abrogation of p53-mediated G1/S cell cycle checkpoint and loss of Rb tumor-suppressor function. When hiPSCs were transplanted into the kidney capsules of immunocompromised mice, they developed high-grade teratomas characterized by the presence of cells that exhibited non-uniform shapes and sizes, high nuclear pleomorphism and centrosome amplification. Significantly, ex vivo cells derived from teratomas exhibited high self-renewal capacity that was linked to Aurora-A kinase activity and gave rise to lung metastasis when injected into the tail vein of immunocompromised mice. Collectively, these findings demonstrated a high risk for malignancy of hiPSCs that exhibit Aurora-A overexpression, loss of Rb function, centrosome amplification and CIN. Based on these findings, we proposed that Aurora-A-targeted therapy could represent a promising prophylactic therapeutic strategy to decrease the likelihood of CIN and development of aggressive teratomas derived from hiPSCs.


Assuntos
Aurora Quinase A/genética , Células-Tronco Embrionárias Humanas/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Teratoma/terapia , Animais , Carcinogênese/genética , Diferenciação Celular/genética , Centrossomo/metabolismo , Instabilidade Cromossômica/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Fator 4 Semelhante a Kruppel , Camundongos , Teratoma/genética , Teratoma/patologia
8.
Oncotarget ; 8(53): 91803-91816, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29207686

RESUMO

Although the majority of breast cancers initially respond to the cytotoxic effects of chemotherapeutic agents, most breast cancer patients experience tumor relapse and ultimately die because of drug resistance. Breast cancer cells undergoing epithelial to mesenchymal transition (EMT) acquire a CD44+/CD24-/ALDH1+ cancer stem cell-like phenotype characterized by an increased capacity for tumor self-renewal, intrinsic drug resistance and high proclivity to develop distant metastases. We uncovered in human breast tumor xenografts a novel non-mitotic role of Aurora-A kinase in promoting breast cancer metastases through activation of EMT and expansion of breast tumor initiating cells (BTICs). In this study we characterized the role of the Aurora-A/SMAD5 oncogenic axis in the induction of chemoresistance. Breast cancer cells overexpressing Aurora-A showed resistance to conventional chemotherapeutic agents, while treatment with alisertib, a selective Aurora-A kinase inhibitor, restored chemosensitivity. Significantly, SMAD5 expression was required to induce chemoresistance and maintain a breast cancer stem cell-like phenotype, indicating that the Aurora-A/SMAD5 oncogenic axis promotes chemoresistance through activation of stemness signaling. Taken together, these findings identified a novel mechanism of drug resistance through aberrant activation of the non-canonical Aurora-A/SMAD5 oncogenic axis in breast cancer.

9.
Front Oncol ; 5: 295, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779440

RESUMO

Mammalian Aurora family of serine/threonine kinases are master regulators of mitotic progression and are frequently overexpressed in human cancers. Among the three members of the Aurora kinase family (Aurora-A, -B, and -C), Aurora-A and Aurora-B are expressed at detectable levels in somatic cells undergoing mitotic cell division. Aberrant Aurora-A kinase activity has been implicated in oncogenic transformation through the development of chromosomal instability and tumor cell heterogeneity. Recent studies also reveal a novel non-mitotic role of Aurora-A activity in promoting tumor progression through activation of epithelial-mesenchymal transition reprograming resulting in the genesis of tumor-initiating cells. Therefore, Aurora-A kinase represents an attractive target for cancer therapeutics, and the development of small molecule inhibitors of Aurora-A oncogenic activity may improve the clinical outcomes of cancer patients. In the present review, we will discuss mitotic and non-mitotic functions of Aurora-A activity in oncogenic transformation and tumor progression. We will also review the current clinical studies, evaluating small molecule inhibitors of Aurora-A activity and their efficacy in the management of cancer patients.

10.
Int J Oncol ; 45(3): 1193-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24970653

RESUMO

Inflammatory breast cancer (IBC) is an angioinvasive and most aggressive type of advanced breast cancer characterized by rapid proliferation, chemoresistance, early metastatic development and poor prognosis. IBC tumors display a triple-negative breast cancer (TNBC) phenotype characterized by centrosome amplification, high grade of chromosomal instability (CIN) and low levels of expression of estrogen receptor α (ERα), progesterone receptor (PR) and HER-2 tyrosine kinase receptor. Since the TNBC cells lack these receptors necessary to promote tumor growth, common treatments such as endocrine therapy and molecular targeting of HER-2 receptor are ineffective for this subtype of breast cancer. To date, not a single targeted therapy has been approved for non-inflammatory and inflammatory TNBC tumors and combination of conventional cytotoxic chemotherapeutic agents remains the standard therapy. IBC tumors generally display activation of epithelial to mesenchymal transition (EMT) that is functionally linked to a CD44+/CD24-/Low stem-like phenotype. Development of EMT and consequent activation of stemness programming is responsible for invasion, tumor self-renewal and drug resistance leading to breast cancer progression, distant metastases and poor prognosis. In this study, we employed the luminal ER+ MCF-7 and the IBC SUM149PT breast cancer cell lines to establish the extent to which high grade of CIN and chemoresistance were mechanistically linked to the enrichment of CD44+/CD24low/- CSCs. Here, we demonstrate that SUM149PT cells displayed higher CIN than MCF-7 cells characterized by higher percentage of structural and numerical chromosomal aberrations. Moreover, centrosome amplification, cyclin E overexpression and phosphorylation of retinoblastoma (Rb) were restricted to the stem-like CD44+/CD24-/Low subpopulation isolated from SUM149PT cells. Significantly, CD44+/CD24-/Low CSCs displayed resistance to conventional chemotherapy but higher sensitivity to SU9516, a specific cyclin-dependent kinase 2 (Cdk2) inhibitor, demonstrating that aberrant activation of cyclin E/Cdk2 oncogenic signaling is essential for the maintenance and expansion of CD44+/CD24-/Low CSC subpopulation in IBC. In conclusion, our findings propose a novel therapeutic approach to restore chemosensitivity and delay recurrence of IBC tumors based on the combination of conventional chemotherapy with small molecule inhibitors of the Cdk2 cell cycle kinase.


Assuntos
Antígeno CD24/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Receptores de Hialuronatos/metabolismo , Imidazóis/farmacologia , Indóis/farmacologia , Neoplasias Inflamatórias Mamárias/tratamento farmacológico , Paclitaxel/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral , Instabilidade Cromossômica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Neoplasias Inflamatórias Mamárias/patologia , Células MCF-7 , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
11.
Adv Biol Regul ; 56: 81-107, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24913694

RESUMO

Over the past 10 years there have been significant advances in our understanding of breast cancer and the important roles that breast cancer initiating cells (CICs) play in the development and resistance of breast cancer. Breast CICs endowed with self-renewing and tumor-initiating capacities are believed to be responsible for the relapses which often occur after various breast cancer therapies. In this review, we will summarize some of the key developments in breast CICs which will include discussion of some of the key genes implicated: estrogen receptor (ER), HER2, BRCA1, TP53, PIK3CA, RB, P16INK1 and various miRs as well some drugs which are showing promise in targeting CICs. In addition, the concept of combined therapies will be discussed. Basic and clinical research is resulting in novel approaches to improve breast cancer therapy by targeting the breast CICs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células-Tronco Neoplásicas/metabolismo , Proteínas/genética , Proteínas/metabolismo
12.
Oncotarget ; 5(10): 2881-911, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24931005

RESUMO

The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) was initially identified and studied in the regulation of glycogen synthesis. GSK-3 functions in a wide range of cellular processes. Aberrant activity of GSK-3 has been implicated in many human pathologies including: bipolar depression, Alzheimer's disease, Parkinson's disease, cancer, non-insulin-dependent diabetes mellitus (NIDDM) and others. In some cases, suppression of GSK-3 activity by phosphorylation by Akt and other kinases has been associated with cancer progression. In these cases, GSK-3 has tumor suppressor functions. In other cases, GSK-3 has been associated with tumor progression by stabilizing components of the beta-catenin complex. In these situations, GSK-3 has oncogenic properties. While many inhibitors to GSK-3 have been developed, their use remains controversial because of the ambiguous role of GSK-3 in cancer development. In this review, we will focus on the diverse roles that GSK-3 plays in various human cancers, in particular in solid tumors. Recently, GSK-3 has also been implicated in the generation of cancer stem cells in various cell types. We will also discuss how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTORC1, Ras/Raf/MEK/ERK, Wnt/beta-catenin, Hedgehog, Notch and others.


Assuntos
Quinase 3 da Glicogênio Sintase/fisiologia , Neoplasias/enzimologia , Animais , Humanos , Neoplasias/genética , Neoplasias/fisiopatologia
13.
PLoS One ; 9(5): e96995, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24816249

RESUMO

Development of endocrine resistance during tumor progression represents a major challenge in the management of estrogen receptor alpha (ERα) positive breast tumors and is an area under intense investigation. Although the underlying mechanisms are still poorly understood, many studies point towards the 'cross-talk' between ERα and MAPK signaling pathways as a key oncogenic axis responsible for the development of estrogen-independent growth of breast cancer cells that are initially ERα+ and hormone sensitive. In this study we employed a metastatic breast cancer xenograft model harboring constitutive activation of Raf-1 oncogenic signaling to investigate the mechanistic linkage between aberrant MAPK activity and development of endocrine resistance through abrogation of the ERα signaling axis. We demonstrate for the first time the causal role of the Aurora-A mitotic kinase in the development of endocrine resistance through activation of SMAD5 nuclear signaling and down-regulation of ERα expression in initially ERα+ breast cancer cells. This contribution is highly significant for the treatment of endocrine refractory breast carcinomas, because it may lead to the development of novel molecular therapies targeting the Aurora-A/SMAD5 oncogenic axis. We postulate such therapy to result in the selective eradication of endocrine resistant ERαlow/- cancer cells from the bulk tumor with consequent benefits for breast cancer patients.


Assuntos
Aurora Quinase A/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Hormônios/farmacologia , Animais , Neoplasias da Mama/enzimologia , Progressão da Doença , Feminino , Humanos , Células MCF-7 , Camundongos , Proteína Smad5/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Oncol Rep ; 29(5): 1785-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23446853

RESUMO

Centrosome amplification plays a key role in the origin of chromosomal instability (CIN) during cancer development and progression. In this study, MCF-7 breast cancer cell lines harboring abrogated p53 function (vMCF-7DNp53) were employed to investigate the relationship between induction of genotoxic stress, activation of cyclin-A/Cdk2 and Aurora-A oncogenic signalings and development of centrosome amplification. Introduction of genotoxic stress in the vMCF-7DNp53 cell line by treatment with hydroxyurea (HU) induced centrosome amplification that was mechanistically linked to Aurora-A kinase activity. In cells carrying defective p53, the development of centrosome amplification also occurred following treatment with another DNA damaging agent, methotrexate. Importantly, we demonstrated that Aurora-A kinase-induced centrosome amplification was mediated by Cdk2 kinase since molecular inhibition of Cdk2 activity by SU9516 suppressed Aurora-A centrosomal localization and consequent centrosome amplification. In addition, we employed vMCF-7DRaf-1 cells that display high levels of endogenous cyclin-A and demonstrated that molecular targeting of Aurora-A by Alisertib reduces cyclin-A expression. Taken together, these findings demonstrate a novel positive feed-back loop between cyclin-A/Cdk2 and Aurora-A pathways in the development of centrosome amplification in breast cancer cells. They also provide the translational rationale for targeting 'druggable cell cycle regulators' as an innovative therapeutic strategy to inhibit centrosome amplification and CIN in breast tumors resistant to conventional chemotherapeutic drugs.


Assuntos
Aurora Quinase A/metabolismo , Neoplasias da Mama/enzimologia , Centrossomo/efeitos dos fármacos , Centrossomo/enzimologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Hidroxiureia/farmacologia , Aurora Quinase A/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Centrossomo/metabolismo , Instabilidade Cromossômica/efeitos dos fármacos , Ciclina A/genética , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Feminino , Humanos , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Int J Oncol ; 40(6): 1858-64, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22447278

RESUMO

Aberrant activation of the Raf/MEK/MAPK pathway plays a key role in breast cancer development and progression. Dysregulation of Raf/MEK/MAPK oncogenic signaling often results from overexpression of the HER-2/Neu tyrosine kinase receptor leading to chemoendocrine resistance, development of distant metastases and ultimately poor prognosis in breast cancer patients. HER-2/Neu overexpression is also linked to activation of the epithelial to mesenchymal transition (EMT) pathway, loss of adhesion molecules and metastasis. Recently, it has been demonstrated that cancer cells that undergo EMT acquire a CD44+/CD24-/low basal cancer stem cell-like phenotype and are characterized by activation of HER-2/Neu and TGFß oncogenic signaling pathways with increased capacity of self-renewal, drug resistance, invasion and distant metastases. Following metastatic dissemination, cancer cells re-activate certain epithelial properties through mesenchymal to epithelial transition (MET) to establish neoplastic lesions at secondary sites, although the molecular mechanisms regulating MET remain elusive. In this study we demonstrate that constitutive activation of Raf-1 oncogenic signaling induces HER-2/Neu overexpression leading to the development of distant metastases in ERα+ MCF-7 breast cancer xenografts. Importantly, development of distant metastases in xenograft models was linked to activation of the MET pathway characterized by reduced expression of EMT inducer genes (TGFB2, TWIST1 and FOXC1) and overexpression of BMB7, CXCR7 and EGR family of transcription factors. In summary, our results demonstrate for the first time that amplification of Raf/MEK/MAPK oncogenic signaling during tumor growth promotes the genesis of metastatic lesions from primary tumors by activating the mesenchymal epithelial transition.


Assuntos
Neoplasias da Mama/patologia , Transdiferenciação Celular , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-raf/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Humanos , Metástase Neoplásica , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Receptor ErbB-2/metabolismo , Carga Tumoral , beta Catenina/metabolismo
16.
Int J Oncol ; 37(5): 1167-76, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20878064

RESUMO

Development of chromosomal instability (CIN) and consequent phenotypic heterogeneity represent common events during breast cancer progression. Breast carcinomas harboring extensive chromosomal aberrations display a more aggressive behavior characterized by chemoresistance and the propensity to give rise to distant metastases. The tumor suppressor p53 plays a key role in the maintenance of chromosomal stability and tissue homeostasis through activation of cell cycle checkpoints following DNA damage and control of centrosome duplication that ensures equal chromosome segregation during cell division. Furthermore, p53 suppresses CD44 expression and the acquisition of stem cell-like properties responsible for epithelial to mesenchymal transition (EMT) and metastasis. In this study we employed MCF-7 breast cancer cells with endogenous wild-type p53, an engineered MCF-7 variant (vMCF-7(DNP53)) overexpressing a dominant negative p53val135 mutant, and cells re-cultured from vMCF-7(DNP53) tumor xenografts. We carried out an integrative transcriptome and cytogenetic analysis to characterize the mechanistic linkage between loss of p53 function, EMT and consequent establishment of invasive gene signatures during breast cancer progression. We demonstrate that abrogation of p53 function drives the early transcriptome changes responsible for cell proliferation, EMT and survival, while further transcriptome changes that occur during in vivo tumor progression are mechanistically linked to the development of CIN leading to a more invasive and metastatic breast cancer phenotype. Here we identified distinct novel non-canonical transcriptome networks involved in cell proliferation, EMT, chemoresistance and invasion that arise following abrogation of p53 function in vitro and development of CIN in vivo. These studies also have important translational implications since some of the nodal genes identified here are 'druggable' making them appropriate molecular targets for the treatment of breast carcinomas displaying mutant p53, EMT, CIN and high metastatic potential.


Assuntos
Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Análise em Microsséries , Microscopia de Fluorescência , Invasividade Neoplásica/patologia , Transplante Heterólogo , Proteína Supressora de Tumor p53/metabolismo
17.
J Biol Chem ; 285(40): 30443-52, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20663877

RESUMO

Here, we demonstrate that p68 (DDX5) and p72 (DDX17), two homologous RNA helicases and transcriptional cofactors, are substrates for the acetyltransferase p300 in vitro and in vivo. Mutation of acetylation sites affected the binding of p68/p72 to histone deacetylases, but not to p300 or estrogen receptor. Acetylation additionally increased the stability of p68 and p72 RNA helicase and stimulated their ability to coactivate the estrogen receptor, thereby potentially contributing to its aberrant activation in breast tumors. Also, acetylation of p72, but not of p68 RNA helicase, enhanced p53-dependent activation of the MDM2 promoter, pointing at another mechanism of how p72 acetylation may facilitate carcinogenesis by boosting the negative p53-MDM2 feedback loop. Furthermore, blocking p72 acetylation caused cell cycle arrest and apoptosis, revealing an essential role for p72 acetylation. In conclusion, our report has identified for the first time that acetylation modulates RNA helicases and provides multiple mechanisms how acetylation of p68 and p72 may affect normal and tumor cells.


Assuntos
Apoptose/fisiologia , Ciclo Celular/fisiologia , RNA Helicases DEAD-box/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , RNA Helicases DEAD-box/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Células HeLa , Humanos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP/genética
18.
Cancer Res ; 70(8): 3320-8, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20388771

RESUMO

When cells encounter substantial DNA damage, critical cell cycle events are halted while DNA repair mechanisms are activated to restore genome integrity. Genomic integrity also depends on proper assembly and function of the bipolar mitotic spindle, which is required for equal chromosome segregation. Failure to execute either of these processes leads to genomic instability, aging, and cancer. Here, we show that following DNA damage in the breast cancer cell line MCF-7, the centrosome protein centrin2 moves from the cytoplasm and accumulates in the nucleus in a xeroderma pigmentosum complementation group C protein (XPC)-dependent manner, reducing the available cytoplasmic pool of this key centriole protein and preventing centrosome amplification. MDA-MB 231 cells do not express XPC and fail to move centrin into the nucleus following DNA damage. Reintroduction of XPC expression in MDA-MB 231 cells rescues nuclear centrin2 sequestration and reestablishes control against centrosome amplification, regardless of mutant p53 status. Importantly, the capacity to repair DNA damage was also dependent on the availability of centrin2 in the nucleus. These observations show that centrin and XPC cooperate in a reciprocal mechanism to coordinate centrosome homeostasis and DNA repair and suggest that this process may provide a tractable target to develop treatments to slow progression of cancer and aging.


Assuntos
Neoplasias da Mama/metabolismo , Centrossomo/ultraestrutura , Reparo do DNA , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular , Citoplasma/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Fibroblastos/metabolismo , Homeostase , Humanos , Microscopia de Fluorescência/métodos , Modelos Biológicos
19.
J Mammary Gland Biol Neoplasia ; 9(3): 275-83, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15557800

RESUMO

The development and progression of aggressive breast cancer is characterized by genomic instability leading to multiple genetic defects, phenotypic diversity, chemoresistance, and poor outcome. Centrosome abnormalities have been implicated in the origin of chromosomal instability through the development of multipolar mitotic spindles. Breast tumor centrosomes display characteristic structural abnormalities, termed centrosome amplification , including: increase in centrosome number and volume, accumulation of excess pericentriolar material, supernumerary centrioles, and inappropriate phosphorylation of centrosome proteins. In addition, breast tumor centrosomes also show functional abnormalities characterized by inappropriate centrosome duplication during the cell cycle and nucleation of unusually large microtubule arrays. These observations have important implications for understanding the mechanisms underlying genomic instability and loss of cell polarity in cancer. This review focuses on the coordination of the centrosome, DNA, and cell cycles in normal cells and their deregulation resulting in centrosome amplification and chromosomal instability in the development and progression of breast cancer.


Assuntos
Aneuploidia , Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Centrossomo , Instabilidade Cromossômica , Ciclo Celular , DNA , Feminino , Amplificação de Genes , Genes p53 , Humanos , Mitose
20.
Oncogene ; 23(23): 4068-75, 2004 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15064746

RESUMO

Centrosome amplification plays a key role in the origin of chromosomal instability during cancer development and progression. In this study, breast cancer cell lines with different p53 backgrounds were used to investigate the relationship between genotoxic stress, G(1)/S cell cycle checkpoint integrity, and the development of centrosome amplification. Introduction of DNA damage in the MCF-7 cell line by treatment with hydroxyurea (HU) or daunorubicin (DR) resulted in the arrest of both G(1)/S cell cycle progression and centriole duplication. In these cells, which carry functional p53, HU treatment also led to nuclear accumulation of p53 and p21(WAF1), retinoblastoma hypophosphorylation, and downregulation of cyclin A. MCF-7 cells carrying a recombinant dominant-negative p53 mutant (vMCF-7(DNp53)) exhibited a shortened G(1) phase of the cell cycle and retained a normal centrosome phenotype. However, these cells developed amplified centrosomes following HU treatment. The MDA-MB 231 cell line, which carries mutant p53 at both alleles, showed amplified centrosomes at the outset, and developed a hyperamplified centrosome phenotype following HU treatment. In cells carrying defective p53, the development of centrosome amplification also occurred following treatment with another DNA damaging agent, DR. Taken together, these findings demonstrate that loss of p53 function alone is not sufficient to drive centrosome amplification, but plays a critical role in this process following DNA damage through abrogation of the G(1)/S cell cycle checkpoint. Furthermore, these studies have important clinical implications because they suggest that breast cancers with compromised p53 function may develop centrosome amplification and consequent chromosomal instability following treatment with genotoxic anticancer drugs.


Assuntos
Neoplasias da Mama/metabolismo , Ciclo Celular/fisiologia , Centrossomo/metabolismo , Antineoplásicos/farmacologia , Ciclo Celular/genética , Centrossomo/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Feminino , Humanos , Hidroxiureia/farmacologia , Fenótipo , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...