Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-2): 025211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491715

RESUMO

The quality of the proton beam produced by target normal sheath acceleration (TNSA) with high-power lasers can be significantly improved with the use of helical coils. While they showed promising results in terms of focusing, their performances in terms of the of cut-off energy and bunching stay limited due to the dispersive nature of helical coils. A new scheme of helical coil with a tube surrounding the helix is introduced, and the first numerical simulations and an analytical model show a possibility of a drastic reduction of the current pulse dispersion for the parameters of high-power-laser facilities. The helical coils with tube strongly increase bunching, creating two collimated narrow-band proton beams from a broad and divergent TNSA distribution. The analytical model provides scaling of proton parameters as a function of laser facility features.

2.
Phys Rev Lett ; 130(26): 265101, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450828

RESUMO

The propagation and energy coupling of intense laser beams in plasmas are critical issues in inertial confinement fusion. Applying magnetic fields to such a setup has been shown to enhance fuel confinement and heating. Here we report on experimental measurements demonstrating improved transmission and increased smoothing of a high-power laser beam propagating in a magnetized underdense plasma. We also measure enhanced backscattering, which our kinetic simulations show is due to magnetic confinement of hot electrons, thus leading to reduced target preheating.


Assuntos
Elétrons , Calefação , Frequência Cardíaca , Cinética , Lasers
3.
Phys Rev E ; 106(4-2): 045211, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397600

RESUMO

A strong quasistationary magnetic field is generated in hollow targets with curved internal surface under the action of a relativistically intense picosecond laser pulse. Experimental data evidence the formation of quasistationary strongly magnetized plasma structures decaying on a hundred picoseconds timescale, with the magnetic field strength of the kilotesla scale. Numerical simulations unravel the importance of transient processes during the magnetic field generation and suggest the existence of fast and slow regimes of plasmoid evolution depending on the interaction parameters. The proposed setup is suited for perspective highly magnetized plasma application and fundamental studies.

4.
Sci Rep ; 12(1): 4665, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304500

RESUMO

For several decades, the interest of the scientific community in aneutronic fusion reactions such as proton-Boron fusion has grown because of potential applications in different fields. Recently, many scientific teams in the world have worked experimentally on the possibility to trigger proton-Boron fusion using intense lasers demonstrating an important renewal of interest of this field. It is now possible to generate ultra-short high intensity laser pulses at high repetition rate. These pulses also have unique properties that can be leveraged to produce proton-Boron fusion reactions. In this article, we investigate the interaction of a high energy attosecond pulse with a solid proton-Boron target and the associated ion acceleration supported by numerical simulations. We demonstrate the efficiency of single-cycle attosecond pulses in comparison to multi-cycle attosecond pulses in ion acceleration and magnetic field generation. Using these results we also propose a path to proton-Boron fusion using high energy attosecond pulses.

5.
Phys Rev E ; 103(5-1): 053202, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134285

RESUMO

In an experiment performed with a high-intensity and high-energy laser system, α-particle production in proton-boron reaction by using a laser-driven proton beam was measured. α particles were observed from the front and also from the rear side, even after a 2-mm-thick boron target. The data obtained in this experiment have been analyzed using a sequence of numerical simulations. The simulations clarify the mechanisms of α-particle production and transport through the boron targets. α-particle energies observed in the experiment and in the simulation reach 10-20 MeV through energy transfer from 20-30 MeV energy incident protons. Despite the lower cross sections for protons with energy above the sub-MeV resonances in the proton-boron reactions, 10^{8}-10^{9}α particles per steradian have been detected.

6.
Sci Rep ; 11(1): 2226, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500441

RESUMO

Laser-driven proton acceleration is a growing field of interest in the high-power laser community. One of the big challenges related to the most routinely used laser-driven ion acceleration mechanism, Target-Normal Sheath Acceleration (TNSA), is to enhance the laser-to-proton energy transfer such as to maximize the proton kinetic energy and number. A way to achieve this is using nanostructured target surfaces in the laser-matter interaction. In this paper, we show that nanowire structures can increase the maximum proton energy by a factor of two, triple the proton temperature and boost the proton numbers, in a campaign performed on the ultra-high contrast 10 TW laser at the Lund Laser Center (LLC). The optimal nanowire length, generating maximum proton energies around 6 MeV, is around 1-2 [Formula: see text]m. This nanowire length is sufficient to form well-defined highly-absorptive NW forests and short enough to minimize the energy loss of hot electrons going through the target bulk. Results are further supported by Particle-In-Cell simulations. Systematically analyzing nanowire length, diameter and gap size, we examine the underlying physical mechanisms that are provoking the enhancement of the longitudinal accelerating electric field. The parameter scan analysis shows that optimizing the spatial gap between the nanowires leads to larger enhancement than by the nanowire diameter and length, through increased electron heating.

7.
Rev Sci Instrum ; 91(10): 103303, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33138598

RESUMO

We report on the cross-calibration of Thomson Parabola (TP) and Time-of-Flight (TOF) detectors as particle diagnostics, implemented on the most recent setup of the ALLS 100 TW laser-driven ion acceleration beamline. The Microchannel Plate (MCP) used for particle detection in the TP spectrometer has been calibrated in intensity on the tandem linear accelerator at the Université de Montréal. The experimental data points of the scaling factor were obtained by performing a pixel cluster analysis of single proton impacts on the MCP. A semi-empirical model was extrapolated and fitted to the data to apply the calibration also to higher kinetic energies and to extend it to other ion species. Two TOF lines using diamond detectors, placed at +6° and -9° with respect to the target-normal axis, were benchmarked against the TP spectrometer measurements to determine the field integrals related to its electric and magnetic dispersions. The mean integral proton numbers obtained on the beamline were about 4.1 × 1011 protons/sr with a standard deviation of 15% in the central section of the spectrum around 3 MeV, hence witnessing the high repeatability of the proton bunch generation. The mean maximum energy was of 7.3 ± 0.5 MeV, well in agreement with similar other 100 TW-scale laser facilities, with the best shots reaching 9 MeV and nearly 1012 protons/sr. The used particle diagnostics are compatible with the development of a high-repetition rate targetry due to their fast online readout and are therefore a crucial step in the automation of any beamline.

8.
Phys Rev E ; 102(3-1): 033202, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075864

RESUMO

Magnetic reconnection in a relativistic electron magnetization regime was observed in a laboratory plasma produced by a high-intensity, large energy, picoseconds laser pulse. Magnetic reconnection conditions realized with a laser-driven several kilotesla magnetic field is comparable to that in the accretion disk corona of black hole systems, i.e., Cygnus X-1. We observed particle energy distributions of reconnection outflow jets, which possess a power-law component in a high-energy range. The hardness of the observed spectra could explain the hard-state x-ray emission from accreting black hole systems.

9.
Phys Rev E ; 101(3-1): 031201, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289929

RESUMO

Relativistic electron temperatures were measured from kilojoule, subrelativistic laser-plasma interactions. Experiments show an order of magnitude higher temperatures than expected from a ponderomotive scaling, where temperatures of up to 2.2 MeV were generated using an intensity of 1×10^{18}W/cm^{2}. Two-dimensional particle-in-cell simulations suggest that electrons gain superponderomotive energies by stochastic acceleration as they sample a large area of rapidly changing laser phase. We demonstrate that such high temperatures are possible from subrelativistic intensities by using lasers with long pulse durations and large spatial scales.

10.
Phys Rev Lett ; 123(5): 055002, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491329

RESUMO

Collisionless shocks are ubiquitous in the Universe as a consequence of supersonic plasma flows sweeping through interstellar and intergalactic media. These shocks are the cause of many observed astrophysical phenomena, but details of shock structure and behavior remain controversial because of the lack of ways to study them experimentally. Laboratory experiments reported here, with astrophysically relevant plasma parameters, demonstrate for the first time the formation of a quasiperpendicular magnetized collisionless shock. In the upstream it is fringed by a filamented turbulent region, a rudiment for a secondary Weibel-driven shock. This turbulent structure is found responsible for electron acceleration to energies exceeding the average energy by two orders of magnitude.

11.
Rev Sci Instrum ; 90(8): 083301, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472601

RESUMO

In this work, we calibrate the newly developed EBT-XD radiochromic films (RCFs) manufactured by Gafchromictm using protons in the energy range of 4-10 MeV. Irradiation was performed on the 2 × 6 MV tandem linear accelerator located at the Université de Montréal. The RCFs were digitized using an Epson Perfection V700 flatbed scanner using both the red-green-blue and grayscale channels. The proton fluences were measured with Faraday cups calibrated in absolute terms. The linear energy transfer function within the active layer of the films was calculated using the mass stopping power tables coming from the PSTAR database from the National Institute of Standards and Technology (NIST) to allow retrieval of the deposited dose. We find that the calibration curves for 7 and 10 MeV protons are nearly equivalent. The 4 MeV calibration curves exhibit a quenching effect due to the Bragg peak that falls close to the active layer. A linearization of this energy dependence was developed using a semiempirical parametric model to allow the generation of calibration curves for any incident proton energy within the present range. Excellent correspondence (<5% dose difference for the same netOD) of the 10 MeV calibration curves was noted when compared to existing high-energy proton (148.2 MeV) calibration curves reported in the literature. Our calibration extends the range of operation of EBT-XD films to low-energy proton beam dosimetry.

13.
Sci Rep ; 7(1): 13505, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044204

RESUMO

We have investigated proton acceleration in the forward direction from a near-critical density hydrogen gas jet target irradiated by a high intensity (1018 W/cm2), short-pulse (5 ps) laser with wavelength of 1.054 µm. We observed the signature of the Collisionless Shock Acceleration mechanism, namely quasi-monoenergetic proton beams with small divergence in addition to the more commonly observed electron-sheath driven proton acceleration. The proton energies we obtained were modest (~MeV), but prospects for improvement are offered through further tailoring the gas jet density profile. Also, we observed that this mechanism is very robust in producing those beams and thus can be considered as a future candidate in laser-driven ion sources driven by the upcoming next generation of multi-PW near-infrared lasers.

14.
Phys Rev E ; 95(1-1): 013208, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208487

RESUMO

Interaction of a high-intensity short laser pulse with near-critical plasmas allows us to achieve extremely high coupling efficiency and transfer laser energy to energetic ions. One-dimensional particle-in-cell simulations are considered to detail the processes involved in the energy transfer. A confrontation of the numerical results with the theory highlights a key role played by the process of stimulated Raman scattering in the relativistic regime. The interaction of a 1 ps laser pulse (I∼6×10^{18}Wcm^{-2} with an undercritical (0.5n_{c}) homogeneous plasma leads to a very high plasma absorption reaching 68% of the laser pulse energy. This permits a homogeneous electron heating all along the plasma and an efficient ion acceleration at the plasma edges and in cavities.

15.
Phys Rev E ; 93(1): 013201, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26871177

RESUMO

Direct production of electron-positron pairs in two-photon collisions, the Breit-Wheeler process, is one of the basic processes in the universe. However, it has never been directly observed in the laboratory because of the absence of the intense γ-ray sources. Laser-induced synchrotron sources emission may open a way to observe this process. The feasibility of an experimental setup using a MeV photon source is studied in this paper. We compare several γ-ray sources and estimate the expected number of electron-positron pairs and competing processes by using numerical simulations including quantum electrodynamic effects.

16.
Phys Med ; 31(8): 912-921, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26701765

RESUMO

A new deterministic method for calculating the dose distribution in the electron radiotherapy field is presented. The aim of this work was to validate our model by comparing it with the Monte Carlo simulation toolkit, GEANT4. A comparison of the longitudinal and transverse dose deposition profiles and electron distributions in homogeneous water phantoms showed a good accuracy of our model for electron transport, while reducing the calculation time by a factor of 50. Although the Bremsstrahlung effect is not yet implemented in our model, we propose here a method that solves the Boltzmann kinetic equation and provides a viable and efficient alternative to the expensive Monte Carlo modeling.


Assuntos
Elétrons/uso terapêutico , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Assistida por Computador , Água
18.
Phys Rev Lett ; 115(21): 215003, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26636856

RESUMO

We report on the first self-consistent numerical study of the feasibility of laser-driven relativistic pair shocks of prime interest for high-energy astrophysics. Using a QED-particle-in-cell code, we simulate the collective interaction between two counterstreaming electron-positron jets driven from solid foils by short-pulse (~60 fs), high-energy (~100 kJ) lasers. We show that the dissipation caused by self-induced, ultrastrong (>10^{6} T) electromagnetic fluctuations is amplified by intense synchrotron emission, which enhances the magnetic confinement and compression of the colliding jets.

19.
Artigo em Inglês | MEDLINE | ID: mdl-26565356

RESUMO

A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments.

20.
Rev Sci Instrum ; 86(4): 043502, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933857

RESUMO

Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...