Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 110(19): 3154-3167.e7, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36087581

RESUMO

Serotonin (5-hydroxytryptamine [5-HT]) 5-HT2-family receptors represent essential targets for lysergic acid diethylamide (LSD) and all other psychedelic drugs. Although the primary psychedelic drug effects are mediated by the 5-HT2A serotonin receptor (HTR2A), the 5-HT2B serotonin receptor (HTR2B) has been used as a model receptor to study the activation mechanisms of psychedelic drugs due to its high expression and similarity to HTR2A. In this study, we determined the cryo-EM structures of LSD-bound HTR2B in the transducer-free, Gq-protein-coupled, and ß-arrestin-1-coupled states. These structures provide distinct signaling snapshots of LSD's action, ranging from the transducer-free, partially active state to the transducer-coupled, fully active states. Insights from this study will both provide comprehensive molecular insights into the signaling mechanisms of the prototypical psychedelic LSD and accelerate the discovery of novel psychedelic drugs.


Assuntos
Alucinógenos , Dietilamida do Ácido Lisérgico , Alucinógenos/metabolismo , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/metabolismo , Dietilamida do Ácido Lisérgico/farmacologia , Receptores de Serotonina , Serotonina , beta-Arrestinas/metabolismo
2.
PLoS Comput Biol ; 17(2): e1007856, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571182

RESUMO

Pentameric ligand-gated ion channels (pLGICs) are receptor proteins that are sensitive to their membrane environment, but the mechanism for how lipids modulate function under physiological conditions in a state dependent manner is not known. The glycine receptor is a pLGIC whose structure has been resolved in different functional states. Using a realistic model of a neuronal membrane coupled with coarse-grained molecular dynamics simulations, we demonstrate that some key lipid-protein interactions are dependent on the receptor state, suggesting that lipids may regulate the receptor's conformational dynamics. Comparison with existing structural data confirms known lipid binding sites, but we also predict further protein-lipid interactions including a site at the communication interface between the extracellular and transmembrane domain. Moreover, in the active state, cholesterol can bind to the binding site of the positive allosteric modulator ivermectin. These protein-lipid interaction sites could in future be exploited for the rational design of lipid-like allosteric drugs.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Sítio Alostérico , Animais , Sítios de Ligação , Colesterol/química , Colesterol/metabolismo , Biologia Computacional , Humanos , Ivermectina/química , Ivermectina/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína , Receptores de Glicina/química , Receptores de Glicina/metabolismo
3.
Structure ; 28(6): 601-603, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492412

RESUMO

Recently, we reported the simulation of a stable open state of the glycine receptor. Central to the stability of the simulations was the behavior of the highly conserved leucine residues at the 9' gate, which were found to rotate into adjacent pockets, thus providing a structural rationale for decades of biochemical observations. In contrast, a previously reported model from Cerdan et al. (2018) resembled a more collapsed state. However, in support of their model, they draw attention to the agreement between calculated and experimental conductance measurements and argue that our model tends to overestimate ion flow. Here, we argue that there are many pitfalls with this approach and that the apparent agreement most likely reflects a fortuitous cancellation of errors. The computed values are highly sensitive to very small changes in model parameters. It is also likely that polarization effects will be very significant, and these have not yet been considered.


Assuntos
Receptores de Glicina
4.
Structure ; 28(1): 130-139.e2, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31753620

RESUMO

Pentameric ligand-gated ion channels are key players in mediating fast neurotransmission. Glycine receptors are chloride-selective members of this receptor family that mediate inhibitory synaptic transmission and are implicated in neurological disorders including autism and hyperekplexia. They have been structurally characterized by both X-ray crystallography and cryoelectron microscopy (cryo-EM) studies, with the latter giving rise to what was proposed as a possible open state. However, recent work has questioned the physiological relevance of this open state structure, since it rapidly collapses in molecular dynamics simulations. Here, we show that the collapse can be avoided by a careful equilibration protocol that reconciles the more problematic regions of the original density map and gives a stable open state that shows frequent selective chloride permeation. The protocol developed in this work provides a means to refine open-like structures of the whole pentameric ligand-gated ion channel superfamily and reconciles the previous issues with the cryo-EM structure.


Assuntos
Receptores de Glicina/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Leucina/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica
5.
Neurosci Lett ; 700: 9-16, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29518541

RESUMO

Many proteins that are central to key aspects of neurobiology undergo conformational changes as part of their function, usually in response to a stimulus. Often, these proteins are embedded within a membrane, which creates particular experimental challenges to surmount. This has resulted in computational methods providing a valuable complementary tool for some time now, especially in the development of working models at atomic resolution. Indeed, molecular dynamics (MD) simulations are now routinely applied to new structures, either as part of the initial analysis or as part of an automated pipeline. Such simulations have proven extremely useful in terms of characterizing the inherent underlying conformational dynamics or providing insight into the interactions with the surrounding lipid molecules. However, MD simulations are capable of providing much more sophisticated information, including fundamental kinetic and thermodynamic properties of transitions between states and a description of how those transitions are influenced by the presence of ligands. There is a very large array of advanced simulation methods that can provide this information, but in this short review we limit ourselves to some selected examples of techniques that have given particular insight into proteins associated with molecular neurobiology. In this review, we highlight the use of i) Markov State Modelling to examine sodium dynamics in the dopamine transporter, ii) Metadynamics to explore neurotransmitter binding to a ligand-gated ion channel and iii) Steered MD to investigate conformational change in ionotropic glutamate receptors.


Assuntos
Simulação por Computador , Ligantes , Simulação de Dinâmica Molecular , Proteínas/química , Animais , Humanos , Ativação do Canal Iônico , Cadeias de Markov , Neurobiologia , Neurotransmissores/química , Ligação Proteica , Conformação Proteica , Receptores Ionotrópicos de Glutamato/química , Sódio/química
6.
J Biol Chem ; 292(12): 5031-5042, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28174298

RESUMO

Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains. E103K is one of few startle mutations found in the extracellular agonist binding site of the channel, in loop A of the principal side of the subunit interface. Homology modeling shows that the side chain of Glu-103 is close to that of Arg-131, in loop E of the complementary side of the binding site, and may form a salt bridge at the back of the binding site, constraining its size. We investigated this hypothesis in recombinant human α1 GlyR by site-directed mutagenesis and functional measurements of agonist efficacy and potency by whole cell patch clamp and single channel recording. Despite its position near the binding site, E103K causes hyperekplexia by impairing the efficacy of glycine, its ability to gate the channel once bound, which is very high in wild type GlyR. Mutating Glu-103 and Arg-131 caused various degrees of loss-of-function in the action of glycine, whereas mutations in Arg-131 enhanced the efficacy of the slightly bigger partial agonist sarcosine (N-methylglycine). The effects of the single charge-swapping mutations of these two residues were largely rescued in the double mutant, supporting the possibility that they interact via a salt bridge that normally constrains the efficacy of larger agonist molecules.


Assuntos
Hiperecplexia/genética , Mutação Puntual , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Glicina/metabolismo , Células HEK293 , Humanos , Hiperecplexia/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Receptores de Glicina/química , Sarcosina/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...