Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Med Infect Dis ; 8(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37368728

RESUMO

On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP's community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983-2005; near future: 2006-2028; medium term: 2030-2052; and far future: 2077-2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1-3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August-October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1-3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal.

2.
Geohealth ; 6(10): e2022GH000597, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36248060

RESUMO

The emergence of COVID-19 brought with it panic and a sense of urgency causing governments to impose strict restrictions on human activities and vehicular movements. With anthropogenic emissions, especially waste management (domestic and municipal), traffic, and industrial activities, said to be a significant contributor to ambient air pollution, this study assessed the impacts of the imposed restrictions on the concentrations and size distribution of atmospheric aerosols and concentration of gaseous pollutants over West African subregion and seven major COVID-19 epicenters in the subregion. Satellite retrievals and reanalysis data sets were used to study the impact of the restrictions on Aerosol Optical Depth (AOD) and atmospheric concentrations NO2, SO2, CO, and O3. The anomalies were computed for 2020 relative to 2017-2019 (the reference years). In 2020 relative to the reference years, for area-averaged AOD levels, there was a consequential mean percentage change between -6.7% ± 21.0% and 19.2% ± 27.9% in the epicenters and -10.1% ± 15.4% over the subregion. The levels of NO2 and SO2 also reduced substantially at the epicenters, especially during the periods when the restrictions were highly enforced. However, the atmospheric levels of CO and ozone increased slightly in 2020 compared to the reference years. This study shows that "a one cap fits all" policy cannot reduced the level of air pollutants and that traffic and industrial processes are not the predominant sources of CO in major cities in the subregion.

3.
PLoS One ; 16(4): e0249199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33819272

RESUMO

OBJECTIVE: The aim of this study is to find the most suitable heat wave definition among 15 different ones and to evaluate its impact on total, age-, and gender-specific mortality for Bandafassi, Senegal. METHODS: Daily weather station data were obtained from Kedougou situated at 17 km from Bandafassi from 1973 to 2012. Poisson generalized additive model (GAM) and distributed lag non-linear model (DLNM) are used to investigate the effect of heat wave on mortality and to evaluate the nonlinear association of heat wave definitions at different lag days, respectively. RESULTS: Heat wave definitions, based on three or more consecutive days with both daily minimum and maximum temperatures greater than the 90th percentile, provided the best model fit. A statistically significant increase in the relative risk (RRs 1.4 (95% Confidence Interval (CI): 1.2-1.6), 1.7 (95% CI: 1.5-1.9), 1.21 (95% CI: 1.08-1.3), 1.2 (95% CI: 1.04-1.5), 1.5 (95% CI: 1.3-1.8), 1.4 (95% CI: 1.2-1.5), 1.5 (95% CI: 1.07-1.6), and 1.5 (95% CI: 1.3-1.8)) of total mortality was observed for eight definitions. By using the definition based on the 90th percentile of minimum and maximum temperature with a 3-day duration, we also found that females and people aged ≥ 55 years old were at higher risks than males and other different age groups to heat wave related mortality. CONCLUSION: The impact of heat waves was associated with total-, age-, gender-mortality. These results are expected to be useful for decision makers who conceive of public health policies in Senegal and elsewhere. Climate parameters, including temperatures and humidity, could be used to forecast heat wave risks as an early warning system in the area where we conduct this research. More broadly, our findings should be highly beneficial to climate services, researchers, clinicians, end-users and decision-makers.


Assuntos
Calor Extremo , Raios Infravermelhos , Mortalidade/tendências , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade
4.
Am J Trop Med Hyg ; 102(5): 1037-1047, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32189612

RESUMO

Malaria is a major public health problem in West Africa. Previous studies have shown that climate variability significantly affects malaria transmission. The lack of continuous observed weather station data and the absence of surveillance data for malaria over long periods have led to the use of reanalysis data to drive malaria models. In this study, we use the Liverpool Malaria Model (LMM) to simulate spatiotemporal variability of malaria in West Africa using daily rainfall and temperature from the following: Twentieth Century Reanalysis (20th CR), National Center for Environmental Prediction (NCEP), European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Reanalysis of the Twentieth Century (ERA20C), and interim ECMWF Re-Analysis (ERA-Interim). Malaria case data from the national surveillance program in Senegal are used for model validation between 2001 and 2016. The warm temperatures found over the Sahelian fringe of West Africa can lead to high malaria transmission during wet years. The rainfall season peaks in July to September over West Africa and Senegal, and the malaria season lasts from September to November, about 1-2 months after the rainfall peak. The long-term trends exhibit interannual and decadal variabilities. The LMM shows acceptable performance in simulating the spatial distribution of malaria incidence. However, some discrepancies are found. These results are useful for decision-makers who plan public health and control measures in affected West African countries. The study would have substantial implications for directing malaria surveillance activities and health policy. In addition, this malaria modeling framework could lead to the development of an early warning system for malaria in West Africa.


Assuntos
Clima , Malária/epidemiologia , África Ocidental/epidemiologia , Humanos , Incidência , Malária/transmissão , Vigilância da População , Chuva , Estações do Ano , Senegal/epidemiologia , Temperatura
5.
Artigo em Inglês | MEDLINE | ID: mdl-28946705

RESUMO

The analysis of the spatial and temporal variability of climate parameters is crucial to study the impact of climate-sensitive vector-borne diseases such as malaria. The use of malaria models is an alternative way of producing potential malaria historical data for Senegal due to the lack of reliable observations for malaria outbreaks over a long time period. Consequently, here we use the Liverpool Malaria Model (LMM), driven by different climatic datasets, in order to study and validate simulated malaria parameters over Senegal. The findings confirm that the risk of malaria transmission is mainly linked to climate variables such as rainfall and temperature as well as specific landscape characteristics. For the whole of Senegal, a lag of two months is generally observed between the peak of rainfall in August and the maximum number of reported malaria cases in October. The malaria transmission season usually takes place from September to November, corresponding to the second peak of temperature occurring in October. Observed malaria data from the Programme National de Lutte contre le Paludisme (PNLP, National Malaria control Programme in Senegal) and outputs from the meteorological data used in this study were compared. The malaria model outputs present some consistencies with observed malaria dynamics over Senegal, and further allow the exploration of simulations performed with reanalysis data sets over a longer time period. The simulated malaria risk significantly decreased during the 1970s and 1980s over Senegal. This result is consistent with the observed decrease of malaria vectors and malaria cases reported by field entomologists and clinicians in the literature. The main differences between model outputs and observations regard amplitude, but can be related not only to reanalysis deficiencies but also to other environmental and socio-economic factors that are not included in this mechanistic malaria model framework. The present study can be considered as a validation of the reliability of reanalysis to be used as inputs for the calculation of malaria parameters in the Sahel using dynamical malaria models.


Assuntos
Simulação por Computador , Malária/epidemiologia , Malária/transmissão , Clima , Humanos , Incidência , Modelos Teóricos , Reprodutibilidade dos Testes , Estações do Ano , Senegal/epidemiologia
6.
C R Biol ; 336(5-6): 253-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23916199

RESUMO

The aim of this work, undertaken in the framework of QWeCI (Quantifying Weather and Climate Impacts on health in the developing countries) project, is to study how climate variability could influence malaria seasonal incidence. It will also assess the evolution of vector-borne diseases such as malaria by simulation analysis of climate models according to various climate scenarios for the next years. Climate variability seems to be determinant for the risk of malaria development (Freeman and Bradley, 1996 [1], Lindsay and Birley, 1996 [2], Kuhn et al., 2005 [3]). Climate can impact on the epidemiology of malaria by several mechanisms, directly, via the development rates and survival of both pathogens and vectors, and indirectly, through changes in vegetation and land surface characteristics such as the variability of breeding sites like ponds.


Assuntos
Clima , Saúde , Malária/epidemiologia , Animais , Simulação por Computador , Culicidae , Humanos , Insetos Vetores , Modelos Estatísticos , Plantas , Prevalência , Chuva , Risco , Estações do Ano , Senegal/epidemiologia , Temperatura , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...