Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Phys Chem Chem Phys ; 9(15): 1837-42, 2007 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-17415496

RESUMO

The conversion reactions associated with mesoporous and nanowire Co(3)O(4) when used as negative electrodes in rechargeable lithium batteries have been investigated. Initially, Li is intercalated into Co(3)O(4) up to x approximately 1.5 Li in Li(x)Co(3)O(4). Thereafter, both materials form a nanocomposite of Co particles imbedded in Li(2)O, which on subsequent charge forms CoO. The capacities on cycling increase on initial cycles to values exceeding the theoretical value for Co(3)O(4) + 8 Li(+) + 8e(-) --> 4 Li(2)O + 3 Co, 890 mAhg(-1), and this is interpreted as due to charge storage in a polymer layer that forms on the high surface area of nanowire and mesoporous Co(3)O(4). After 15 cycles, the capacity decreases drastically for the nanowires due to formation of grains that are separated one from another by a thick polymer layer, leading to electrical isolation. In contrast, the mesoporous Co(3)O(4) losses its mesoporosity and forms a morphology similar to bulk Co(3)O(4) (Co particles imbedded in Li(2)O matrix) with which it exhibits a similar capacity on cycling. In contrast to mesoporous lithium intercalation compounds, which show superior capacity at high rates compared to bulk materials, mesoporosity does not seem to improve the capacity of conversion reactions on extended cycling. If, however, mesoporosity could be retained during the conversion reaction, then higher capacities could be obtained in such systems.


Assuntos
Cobalto/química , Fontes de Energia Elétrica , Eletroquímica/instrumentação , Lítio/química , Microeletrodos , Nanotubos/química , Óxidos/química , Ânions , Instalação Elétrica/instrumentação , Eletroquímica/métodos , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Nanotubos/ultraestrutura , Porosidade
3.
J Am Chem Soc ; 128(4): 1390-3, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16433559

RESUMO

Rechargeable lithium batteries represent one of the most important developments in energy storage for 100 years, with the potential to address the key problem of global warming. However, their ability to store energy is limited by the quantity of lithium that may be removed from and reinserted into the positive intercalation electrode, Li(x)CoO(2), 0.5 < x < 1 (corresponding to 140 mA.h g(-1) of charge storage). Abandoning the intercalation electrode and allowing Li to react directly with O(2) from the air at a porous electrode increases the theoretical charge storage by a remarkable 5-10 times! Here we demonstrate two essential prerequisites for the successful operation of a rechargeable Li/O(2) battery; that the Li(2)O(2) formed on discharging such an O(2) electrode is decomposed to Li and O(2) on charging (shown here by in situ mass spectrometry), with or without a catalyst, and that charge/discharge cycling is sustainable for many cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...