Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Pathol J ; 40(2): 139-150, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606444

RESUMO

Huanglongbing (HLB) is a disease caused by the phloem- limited Candidatus Liberibacter asiaticus (CLas) that affects the citrus industry worldwide. To date, only indirect strategies have been implemented to eradicate HLB. Included among these is the population control of the psyllid vector (Diaphorina citri), which usually provides inconsistent results. Even though strategies for direct CLas suppression seem a priori more promising, only a handful of reports have been focused on a confrontation of the pathogen. Recent developments in polymer chemistry have allowed the design of polycationic self-assembled block copolymers with outstanding antibacterial capabilities. Here, we report the use of polymeric nano-sized bactericide particles (PNB) to control CLas directly in the phloem vasculature. The field experiments were performed in Rioverde, San Luis Potosí, and is one of the most important citrusproducing regions in Mexico. An average 52% reduction in the bacterial population was produced when PNB was injected directly into the trunk of 20 infected trees, although, in some cases, reduction levels reached 97%. These results position PNB as a novel and promising nanotechnological tool for citrus crop protection against CLas and other related pathogens.

2.
Methods Mol Biol ; 2787: 201-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656491

RESUMO

Ribonucleic Acid (RNA) isolation is a basic technique in the field of molecular biology. The purpose of RNA isolation is to acquire pure and complete RNA that can be used to evaluate gene expression. Many methods can be used to perform RNA isolation, all of them based on the chemical properties of nucleic acids. However, some of them do not achieve high RNA yields and purity levels when used in a number of marginally studied crops of agronomic importance, such as grain and vegetable amaranth plants. In the method described here, the use of guanidinium thiocyanate and two additional precipitation steps with different reagents designed to obtain high yields and RNA purity levels from diverse plant species employed for plant functional genomics studies is described.


Assuntos
Produtos Agrícolas , RNA de Plantas , Produtos Agrícolas/genética , RNA de Plantas/isolamento & purificação , RNA de Plantas/genética , Tiocianatos/química , Guanidinas/química , Amaranthus/genética , Amaranthus/química
3.
Front Plant Sci ; 14: 1101375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818889

RESUMO

Heat stress is poised to become a major factor negatively affecting plant performance worldwide. In terms of world food security, increased ambient temperatures are poised to reduce yields in cereals and other economically important crops. Grain amaranths are known to be productive under poor and/or unfavorable growing conditions that significantly affect cereals and other crops. Several physiological and biochemical attributes have been recognized to contribute to this favorable property, including a high water-use efficiency and the activation of a carbon starvation response. This study reports the behavior of the three grain amaranth species to two different stress conditions: short-term exposure to heat shock (HS) conditions using young plants kept in a conditioned growth chamber or long-term cultivation under severe heat stress in greenhouse conditions. The latter involved exposing grain amaranth plants to daylight temperatures that hovered around 50°C, or above, for at least 4 h during the day and to higher than normal nocturnal temperatures for a complete growth cycle in the summer of 2022 in central Mexico. All grain amaranth species showed a high tolerance to HS, demonstrated by a high percentage of recovery after their return to optimal growing conditions. The tolerance observed coincided with increased expression levels of unknown function genes previously shown to be induced by other (a)biotic stress conditions. Included among them were genes coding for RNA-binding and RNA-editing proteins, respectively. HS tolerance was also in accordance with favorable changes in several biochemical parameters usually induced in plants in response to abiotic stresses. Conversely, exposure to a prolonged severe heat stress seriously affected the vegetative and reproductive development of all three grain amaranth species, which yielded little or no seed. The latter data suggested that the usually stress-tolerant grain amaranths are unable to overcome severe heat stress-related damage leading to reproductive failure.

4.
Pest Manag Sci ; 79(1): 368-380, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36165215

RESUMO

BACKGROUND: Metabolic reconfiguration in plants is a hallmark response to insect herbivory that occurs in the attack site and systemically in undamaged tissues. Metabolomic systemic responses can occur rapidly while the herbivore is still present and may persist in newly developed tissue to counterattack future herbivore attacks. This study analyzed the metabolic profile of local and newly developed distal (systemic) leaves of husk tomato (Physalis philadelphica) plants after whitefly Trialeurodes vaporariorum infestation. In addition, the effect of these metabolomic adjustments on whitefly oviposition and development was evaluated. RESULTS: Our results indicate that T. vaporariorum infestation induced significant changes in husk tomato metabolic profiles, not only locally in infested leaves, but also systemically in distal leaves that developed after infestation. The distinctive metabolic profile produced in newly developed leaves affected whitefly nymphal development but did not affect female oviposition, suggesting that changes driven by whitefly herbivory persist in the young leaves that developed after the infestation event to avoid future herbivore attacks. CONCLUSIONS: This report contributes to further understanding the plant responses to sucking insects by describing the metabolic reconfiguration in newly developed, undamaged systemic leaf tissues of husk tomato plants after whitefly infestation. © 2022 Society of Chemical Industry.


Assuntos
Hemípteros , Physalis , Animais , Metabolômica , Folhas de Planta
5.
J Exp Bot ; 73(12): 3898-3912, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35312760

RESUMO

While most plants die below a threshold of water content, desiccation-tolerant species display specific responses that allow them to survive extreme dehydration. Some of these responses are activated at critical stages during water loss and could represent the difference between desiccation tolerance (DT) and death. Here, we report the development of a simple and reproducible system to determine DT in Selaginella species. The system is based on exposure of excised tissue to a dehydration agent inside small containers, and subsequent evaluation for tissue viability. We evaluated several methodologies to determine viability upon desiccation including: triphenyltetrazolium chloride (TTC) staining, the quantum efficiency of PSII, antioxidant potential, and relative electrolyte leakage. Our results show that the TTC test is a simple and accurate assay to identify novel desiccation-tolerant Selaginella species, and can also indicate viability in other desiccation-tolerant models (i.e. ferns and mosses). The system we developed is particularly useful to identify critical points during the dehydration process. We found that a desiccation-sensitive Selaginella species shows a change in viability when dehydrated to 40% relative water content, indicating the onset of a critical condition at this water content. Comparative studies at critical stages could provide a better understanding of DT mechanisms and unravel insights into the key responses to survive desiccation.


Assuntos
Gleiquênias , Selaginellaceae , Biomarcadores , Desidratação , Dessecação , Água/fisiologia
6.
Biology (Basel) ; 11(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053122

RESUMO

Systemin (Sys) is an octadecapeptide, which upon wounding, is released from the carboxy terminus of its precursor, Prosystemin (ProSys), to promote plant defenses. Recent findings on the disordered structure of ProSys prompted us to investigate a putative biological role of the whole precursor deprived of the Sys peptide. We produced transgenic tomato plants expressing a truncated ProSys gene in which the exon coding for Sys was removed and compared their defense response with that induced by the exogenous application of the recombinant truncated ProSys (ProSys(1-178), the Prosystemin sequence devoid of Sys region). By combining protein structure analyses, transcriptomic analysis, gene expression profiling and bioassays with different pests, we demonstrate that truncated ProSys promotes defense barriers in tomato plants through a hormone-independent defense pathway, likely associated with the production of oligogalacturonides (OGs). Both transgenic and plants treated with the recombinant protein showed the modulation of the expression of genes linked with defense responses and resulted in protection against the lepidopteran pest Spodoptera littoralis and the fungus Botrytis cinerea. Our results suggest that the overall function of the wild-type ProSys is more complex than previously shown, as it might activate at least two tomato defense pathways: the well-known Sys-dependent pathway connected with the induction of jasmonic acid biosynthesis and the successive activation of a set of defense-related genes, and the ProSys(1-178)-dependent pathway associated with OGs production leading to the OGs mediate plant immunity.

7.
Plants (Basel) ; 10(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34834814

RESUMO

Cucurbita foetidissima and C. radicans are scarcely studied wild pumpkin species that grow in arid and semi-arid areas of Mexico and the United States. This study describes the morphological, proximal composition, metabolic finger-prints and seed protein profiles of C. foetidissima and C. radicans fruits collected in the wild during a one-year period in different locations of central-western Mexico. The results obtained complement the limited information concerning the fruit composition of C. foetidissima and greatly expand information in this respect regarding C. radicans. Morphology and proximal composition of their fruits varied significantly. Different metabolic fingerprints and seed protein profiles were detected between them and also with the chemical composition of domesticated Cucurbita fruits. The neutral lipids in seed, pulp and peels were rich in wax content and in unsaturated compounds, probably carotenoids and tocopherols, in addition to tri-, di- and mono-acylglycerols. The tri- and diacylglycerol profiles of their seed oils were different from commercial seed oils and between each other. They also showed unusual fatty acid compositions. Evidence of a possible alkaloid in the pulp and peel of both species was obtained in addition to several putative cucurbitacins. An abundance of phenolic acids was found in all fruit parts, whereas flavonoids were only detected in the peels. Unlike most cucurbits, globulins were not the main protein fraction in the seeds of C. radicans, whereas the non-structural carbohydrate and raffinose oligosaccharide content in their fruit parts was lower than in other wild cucurbit species. These results emphasize the significantly different chemical composition of these two marginally studied Cucurbita species, which was more discrepant in C. radicans, despite the notion regarding C. foetidissima as an aberrant species with no affinity to any other Cucurbita species.

8.
Microorganisms ; 9(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34683382

RESUMO

Consistent with their reported abundance in soils, several Burkholderia sensu lato strains were isolated from the rhizosphere of maize plants cultivated at different sites in central México. Comparative analysis of their 16S rRNA gene sequences permitted their separation into three distinctive clades, which were further subdivided into six other clusters by their close resemblance to (1) Trinickia dinghuensis; (2) Paraburkholderia kirstenboschensis, P. graminis, P. dilworthii and P. rhynchosiae; (3) B. gladioli; (4) B. arboris; (5) B. contaminans, or (6) B. metallica representative species. Direct confrontation assays revealed that these strains inhibited the growth of pathogenic Fusarium oxysporum f. sp. radicis-lycopersici, and F. verticillioides within a roughly 3-55% inhibition range. The use of a DIESI-based non-targeted mass spectroscopy experimental strategy further indicated that this method is an option for rapid determination of the pathogen inhibitory capacity of Burkholderia sensu lato strains based solely on the analysis of their exometabolome. Furthermore, it showed that the highest anti-fungal activity observed in B. contaminans and B. arboris was associated with a distinctive abundance of certain m/z ions, some of which were identified as components of the ornbactin and pyochelin siderophores. These results highlight the chemical diversity of Burkholderia sensu lato bacteria and suggest that their capacity to inhibit the Fusarium-related infection of maize in suppressive soils is associated with siderophore synthesis.

9.
Planta ; 254(5): 101, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34669050

RESUMO

MAIN CONCLUSION: Increased resistance to insect herbivory in grain amaranth plants is associated with increased betalain pigmentation, either naturally acquired or accumulated in response to blue-red light irradiation. Betalains are water-soluble pigments characteristic of plants of the Caryophyllales order. Their abiotic stress-induced accumulation is believed to protect against oxidative damage, while their defensive function against biotic aggressors is scarce. A previous observation of induced betalain-biosynthetic gene expression in stressed grain amaranth plants led to the proposal that these pigments play a defensive role against insect herbivory. This study provided further support for this premise. First, a comparison of "green" and "red" Amaranthus cruentus phenotypes showed that the latter suffered less insect herbivory damage. Coincidentally, growth and vitality of Manduca sexta larvae were more severely affected when fed on red-leafed A. cruentus plants or on an artificial diet supplemented with red-leaf pigment extracts. Second, the exposure of A. cruentus and A. caudatus plants, having contrasting pigmentation phenotypes, to light enriched in the blue and red wavelength spectra led to pigment accumulation throughout the plant and to increased resistance to insect herbivory. These events were accompanied by the induced expression of known betalain-biosynthetic genes, including uncharacterized DODA genes believed to participate in this biosynthetic pathway in a still undefined way. Finally, transient co-expression of different combinations of betalain-biosynthetic genes in Nicotiana benthamiana led to detectable accumulation of betalamic acid and betanidin. This outcome supported the participation of certain AhDODA and other genes in the grain amaranth betalain-biosynthetic pathway.


Assuntos
Caryophyllales , Herbivoria , Animais , Insetos , Pigmentação , Nicotiana
10.
Plant Signal Behav ; 16(12): 1962050, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34435930

RESUMO

The Physalis genus includes species of commercial importance due to their ornamental, edible and medicinal properties. These qualities stem from their variety of biologically active compounds. We performed a metabolomic analysis of three Physalis species, i.e., P. angulata, P. grisea, and P. philadelphica, differing in domestication stage and cultivation practices, to determine the degree of inter-species metabolite variation and to test the hypothesis that these related species mount a common metabolomic response to foliar damage caused by Trichoplusia ni larvae. The results indicated that the metabolomic differences detected in the leaves of these species were species-specific and remained even after T. ni herbivory. They also show that each Physalis species displayed a unique response to insect herbivory. This study highlighted the metabolite variation present in Physalis spp. and the persistence of this variability when faced with biotic stressors. Furthermore, it sets an experimental precedent from which highly species-specific metabolites could be identified and subsequently used for plant breeding programs designed to increase insect resistance in Physalis and related plant species.


Assuntos
Physalis , Animais , Herbivoria , Larva , Metabolômica , Folhas de Planta
11.
Front Plant Sci ; 12: 658977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163500

RESUMO

Defoliation tolerance (DT) in Amaranthus cruentus is known to reach its apex at the panicle emergence (PE) phase and to decline to minimal levels at flowering (FL). In this study, defoliation-induced changes were recorded in the content of non-structural carbohydrates and raffinose family oligosaccharides (RFOs), and in the expression and/or activity of sugar starvation response-associated genes in plants defoliated at different vegetative and reproductive stages. This strategy identified sugar-starvation-related factors that explained the opposite DT observed at these key developmental stages. Peak DT at PE was associated with increased cytosolic invertase (CI) activity in all organs and with the extensive induction of various class II trehalose-phosphate synthase (TPS) genes. Contrariwise, least DT at FL coincided with a sharp depletion of starch reserves and with sucrose (Suc) accumulation, in leaves and stems, the latter of which was consistent with very low levels of CI and vacuolar invertase activities that were not further modified by defoliation. Increased Suc suggested growth-inhibiting conditions associated with altered cytosolic Suc-to-hexose ratios in plants defoliated at FL. Augmented cell wall invertase activity in leaves and roots, probably acting in a regulatory rather than hydrolytic role, was also associated with minimal DT observed at FL. The widespread contrast in gene expression patterns in panicles also matched the opposite DT observed at PE and FL. These results reinforce the concept that a localized sugar starvation response caused by C partitioning is crucial for DT in grain amaranth.

12.
Plant Cell Rep ; 39(9): 1143-1160, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32430681

RESUMO

KEY MESSAGE: Transgenic A. hypochondriacus and A. hybridus roots were generated. Further, a distinct plant regeneration program via somatic embryos produced from hairy roots was established. Work was implemented to develop an optimized protocol for root genetic transformation of the three grain amaranth species and A. hybridus, their presumed ancestor. Transformation efficiency was species-specific, being higher in A. hypochondriacus and followed by A. hybridus. Amaranthus cruentus and A. caudatus remained recalcitrant. A reliable and efficient Agrobacteruim rhizogenes-mediated transformation of these species was established using cotyledon explants infected with the previously untested BVG strain. Optimal OD600 bacterial cell densities were 0.4 and 0.8 for A. hypochondriacus and A. hybridus, respectively. Hairy roots of both amaranth species were validated by the amplification of appropriate marker genes and, when pertinent, by monitoring green fluorescent protein emission or ß-glucuronidase activity. Embryogenic calli were generated from A. hypochondriacus rhizoclones. Subsequent somatic embryo maturation and germination required the activation of cytokinin signaling, osmotic stress, red light, and calcium incorporation. A crucial step to ensure the differentiation of germinating somatic embryos into plantlets was their individualization and subcultivation in 5/5 media containing 5% sucrose, 5 g/L gelrite, and 0.2 mg/L 2-isopentenyladenine (2iP) previously acidified to pH 4.0 with phosphoric acid, followed by their transfer to 5/5 + 2iP media supplemented with 100 mg/L CaCl2. These steps were strictly red light dependent. This process represents a viable protocol for plant regeneration via somatic embryo germination from grain amaranth transgenic hairy roots. Its capacity to overcome the recalcitrance to genetic transformation characteristic of grain amaranth has the potential to significantly advance the knowledge of several unresolved biological aspects of grain amaranths.


Assuntos
Agrobacterium/genética , Amaranthus/genética , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas/métodos , Transformação Genética , Amaranthus/fisiologia , Cotilédone/genética , Meios de Cultura/química , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Germinação , Glucuronidase/genética , Proteínas de Fluorescência Verde/genética , Raízes de Plantas/citologia , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase
13.
PeerJ ; 8: e8888, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32337100

RESUMO

Arbuscular mycorrhizal fungi (AMF) colonization, sampled at 32-50 days post-inoculation (dpi), was significantly reduced in suppressor of prosystemin-mediated responses2 (spr2) mutant tomato plants impaired in the ω-3 FATTY ACID DESATURASE7 (FAD7) gene that limits the generation of linolenic acid and, consequently, the wound-responsive jasmonic acid (JA) burst. Contrary to wild-type (WT) plants, JA levels in root and leaves of spr2 mutants remained unchanged in response to AMF colonization, further supporting its regulatory role in the AM symbiosis. Decreased AMF colonization in spr2 plants was also linked to alterations associated with a disrupted FAD7 function, such as enhanced salicylic acid (SA) levels and SA-related defense gene expression and a reduction in fatty acid content in both mycorrhizal spr2 roots and leaves. Transcriptomic data revealed that lower mycorrhizal colonization efficiency in spr2 mutants coincided with the modified expression of key genes controlling gibberellin and ethylene signaling, brassinosteroid, ethylene, apocarotenoid and phenylpropanoid synthesis, and the wound response. Targeted metabolomic analysis, performed at 45 dpi, revealed augmented contents of L-threonic acid and DL-malic acid in colonized spr2 roots which suggested unfavorable conditions for AMF colonization. Additionally, time- and genotype-dependent changes in root steroid glycoalkaloid levels, including tomatine, suggested that these metabolites might positively regulate the AM symbiosis in tomato. Untargeted metabolomic analysis demonstrated that the tomato root metabolomes were distinctly affected by genotype, mycorrhizal colonization and colonization time. In conclusion, reduced AMF colonization efficiency in spr2 mutants is probably caused by multiple and interconnected JA-dependent and independent gene expression and metabolomic alterations.

14.
Plants (Basel) ; 8(11)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731430

RESUMO

Leaves of semi-domesticated Diospyros digyna and wild D. rekoi trees, sampled seasonally in Mexico in 2014, were analyzed. Metabolic fingerprints revealed higher metabolite diversity in D. rekoi leaves. The TLC bands characteristic of glycosylated flavonoids, predominant in this species, matched the detection of quercetin and quercetin 3-O-glucuronides by liquid chromatography (UPLC-MS) of spring leaf extracts (LEs). Further gas chromatography (GC-MS) analysis revealed abundant fatty acids, organic acids, and secondary metabolites including trigonelline, p-coumaric, and ferulic and nicotinic acids. Phenolic-like compounds prevailed in D. digyna LEs, while unidentified triterpenoids and dihydroxylated coumarins were detected by UPLC-MS and GC-MS. A paucity of leaf metabolites in leaves of this species, compared to D. rekoi, was evident. Higher antioxidant capacity (AOC) was detected in D. digyna LEs. The AOC was season-independent in D. digyna but not in D. rekoi. The AOC in both species was concentrated in distinct TLC single bands, although seasonal variation in band intensity was observed among trees sampled. The AOC in D. digyna LEs could be ascribed to the coumarin esculetin. The LEs moderately inhibited phytopathogenic bacteria but not fungi. Leaf chemistry differences in these Mesoamerican Diospyros species substantiated previous variability reported in tree physiology and fruit physical chemistry, postulated to result from domestication and seasonality.

15.
Plants (Basel) ; 8(7)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336665

RESUMO

Water deficit stress (WDS)-tolerance in grain amaranths (Amaranthus hypochondriacus, A. cruentus and A. caudatus), and A. hybridus, their presumed shared ancestor, was examined. A. hypochondriacus was the most WDS-tolerant species, a trait that correlated with an enhanced osmotic adjustment (OA), a stronger expression of abscisic acid (ABA) marker genes and a more robust sugar starvation response (SSR). Superior OA was supported by higher basal hexose (Hex) levels and high Hex/sucrose (Suc) ratios in A. hypochondriacus roots, which were further increased during WDS. This coincided with increased invertase, amylase and sucrose synthase activities and a strong depletion of the starch reserves in leaves and roots. The OA was complemented by the higher accumulation of proline, raffinose, and other probable raffinose-family oligosaccharides of unknown structure in leaves and/or roots. The latter coincided with a stronger expression of Galactinol synthase 1 and Raffinose synthase in leaves. Increased SnRK1 activity and expression levels of the class II AhTPS9 and AhTPS11 trehalose phosphate synthase genes, recognized as part of the SSR network in Arabidopsis, were induced in roots of stressed A. hypochondriacus. It is concluded that these physiological modifications improved WDS in A. hypochondriacus by raising its water use efficiency.

16.
J Sci Food Agric ; 99(13): 6020-6031, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31226216

RESUMO

BACKGROUND: In contrast to commercial Diospyros species, Mesoamerican fruit-producing species are scarcely known, particularly wild species that might harbor desirable traits suitable for breeding. Thus, metabolomic, chemical, and antioxidant profiles of fruits harvested from cultivated Diospyros digyna and wild Diospyros rekoi trees during consecutive winter seasons were obtained. Fruits were harvested in habitats having marked differences in soil quality, climate, and luminosity. RESULTS: D. digyna fruits were larger and less acid than D. rekoi fruits, whereas antioxidant activity tended to be higher in D. rekoi fruits. Phenolic, flavonoid, and sugar contents also varied significantly between species. Metabolomic analysis allowed the pre-identification of 519 and 1665 metabolites in negative and positive electrospray ionization (ESI) modes, respectively. Principal component analysis of the positive ESI data explained 51.8% of the variance and indicated clear metabolomic differences between D. rekoi and D. digyna fruits that were confirmed by direct-injection ESI mass spectrometry profiles. Twenty-one discriminating metabolites were detected in fruits of both species; D. digyna fruits differentially accumulated lysophospholipids, whereas discriminating metabolites in D. rekoi fruits were chemically more diverse than those in D. digyna fruits. CONCLUSION: Domesticated D. digyna fruits have improved physicochemical fruit traits compared with wild D. rekoi fruits, including larger size and lower acidity. The metabolomic and chemical composition of their respective fruits were also significantly different, which in D. rekoi was manifested as a notable season-dependent increase in antioxidant capacity. Therefore, wild D. rekoi can be considered as an important genetic resource for the improvement of commercial Diospyros fruit quality. © 2019 Society of Chemical Industry.


Assuntos
Antioxidantes/análise , Diospyros/química , Antioxidantes/metabolismo , Clima , Diospyros/metabolismo , Ecossistema , Frutas/química , Frutas/metabolismo , Fenótipo , Estações do Ano , Solo/química
17.
Plant Sci ; 277: 155-165, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30466581

RESUMO

Jasmonic acid (JA) is a phytohormone involved in plant development and defense. A major role of JA is the enhancement of secondary metabolite production, such as response to herbivory. Systemin is a bioactive plant peptide of 18 amino acids that contributes to the induction of local and systemic defense responses in tomato (Solanum lycopersicum) through JA biosynthesis. The overexpression of systemin (PS-OE) results in constitutive JA accumulation and enhances pest resistance in plants. Conversely, mutant plants affected in linolenic acid synthesis (spr2) are negatively compromised in the production of JA which favors damage and oviposition by insect herbivores. With undirected mass fingerprinting analyses, we found global metabolic differences between genotypes with modified jasmonic acid production. The spr2 mutants were enriched in di-unsaturated fatty acids and generally showed more changes. The PS-OE genotype produced an unidentified compound with a mass-to-charge ratio of 695 (MZ695). Most strikingly, the steroidal glycoalkaloid biosynthesis was negatively affected in the spr2 genotype. Complementation with jasmonic acid could restore the tomatine pathway, which strongly suggests the control of steroidal glycoalkaloid biosynthesis by jasmonic acid. spr2 plants were more susceptible to fungal infection with Fusarium oxysporum f.sp. ciceris, but not to bacterial infection with Clavibacter michiganensis subsp. michiganensis which supports the involvement of steroidal glycoalkaloids in the plant response against fungi.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Solanum lycopersicum/metabolismo , Fusarium/patogenicidade , Genótipo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Metabolômica , Peptídeos/genética , Peptídeos/metabolismo
18.
PLoS One ; 12(10): e0187235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073239

RESUMO

This study was performed to test the working hypothesis that the primary determinants influencing seasonal driven modifications in carbon mobilization and other key biochemical parameters in leaves of poorly known Diospyros digyna (Ddg; semi-domesticated; perennial) and D. rekoi (Dre; undomesticated; deciduous) trees are determined by environmental growing conditions, agronomic management and physiological plasticity. Thus, biochemical changes in leaves of both trees were recorded seasonally during two successive fruiting years. Trees were randomly sampled in Western Mexico habitats with differing soil quality, climatic conditions, luminosity, and cultivation practices. Leaves of Ddg had consistently higher total chlorophyll contents (CT) that, unexpectedly, peaked in the winter of 2015. In Dre, the highest leaf CT values recorded in the summer of 2015 inversely correlated with low average luminosity and high Chl a/ Chlb ratios. The seasonal CT variations in Dre were congruent with varying luminosity, whereas those in Ddg were probably affected by other factors, such as fluctuating leaf protein contents and the funneling of light energy to foliar non-structural carbohydrates (NSCs) accumulation, which were consistently higher than those detected in Dre leaves. Seasonal foliar NSC fluctuations in both species were in agreement with the carbon (C) demands of flowering, fruiting and/ or leaf regrowth. Seasonal changes in foliar hexose to sucrose (Hex/ Suc) ratios coincided with cell wall invertase activity in both species. In Dre, high Hex/ Suc ratios in spring leaves possibly allowed an accumulation of phenolic acids, not observed in Ddg. The above results supported the hypothesis proposed by showing that leaf responses to changing environmental conditions differ in perennial and deciduous Diospyros trees, including a dynamic adjustment of NSCs to supply the C demands imposed by reproduction, leaf regrowth and, possibly, stress.


Assuntos
Metabolismo dos Carboidratos , Diospyros/metabolismo , Estações do Ano , Sacarose/metabolismo , Clima , Ecossistema , México , Solo
19.
Planta ; 245(3): 623-640, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27988887

RESUMO

MAIN CONCLUSION: An amaranth DGR gene, induced under abiotic stress, modifies cell wall structure and causes hypersensitivity to ABA and salt when overexpressed in Arabidopsis. DUF642 is a highly conserved plant-specific family of unknown cell wall-associated proteins. The AhDGR2 gene, coding for a DUF642 protein, was significantly induced in grain amaranth (Amaranthus hypochondriacus) plants subjected to water-deficit and salinity stress, thereby suggesting its participation in abiotic stress tolerance in this plant. A role in development was also inferred from the higher AhDGR2 expression rates detected in young tissues. Subsequent overexpression of AhDGR2 in transgenic Arabidopsis plants (OE-AhDGR2) supported its possible role in development processes. Thus, OE-AhDGR2 plants generated significantly longer roots when grown in normal MS medium. However, they showed a hypersensitivity to increasing concentrations of abscisic acid or NaCl in the medium, as manifested by shorter root length, smaller and slightly chlorotic rosettes, as well as highly reduced germination rates. Contrary to expectations, OE-AhDGR2 plants were intolerant to abiotic stress. Moreover, cell walls in transgenic plants were thinner, in leaves, and more disorganized, in roots, and had significantly modified pectin levels. Lower pectin methylesterase activity detected in leaves of OE-AhDGR2 plants, but not in roots, was contrary to previous reports associating DUF642 proteins and decreased pectin esterification levels in cell walls. Nonetheless, microarray data identified candidate genes whose expression levels explained the phenotypes observed in leaves of OE-AhDGR2 plants, including several involved in cell wall integrity and extension, growth and development, and resistance to abiotic stress. These results support the role of DUF642 proteins in cell wall-related processes and offer novel insights into their possible role(s) in plants.


Assuntos
Ácido Abscísico/farmacologia , Amaranthaceae/genética , Arabidopsis/fisiologia , Parede Celular/metabolismo , Proteínas de Plantas/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Análise de Sequência de DNA , Estresse Fisiológico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
20.
PLoS One ; 11(10): e0164280, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27749893

RESUMO

Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.


Assuntos
Amaranthus/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Antioxidantes/metabolismo , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Aldeído Pirúvico/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal , Alinhamento de Sequência , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...