Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 14(3): e1002401, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26942442

RESUMO

Demonstrations of both pro-apoptotic and pro-survival abilities of Fas (TNFRSF6/CD95/APO-1) have led to a shift from the exclusive "Fas apoptosis" to "Fas multisignals" paradigm and the acceptance that Fas-related therapies face a major challenge, as it remains unclear what determines the mode of Fas signaling. Through protein evolution analysis, which reveals unconventional substitutions of Fas tyrosine during divergent evolution, evolution-guided tyrosine-phosphorylated Fas proxy, and site-specific phosphorylation detection, we show that the Fas signaling outcome is determined by the tyrosine phosphorylation status of its death domain. The phosphorylation dominantly turns off the Fas-mediated apoptotic signal, while turning on the pro-survival signal. We show that while phosphorylations at Y232 and Y291 share some common functions, their contributions to Fas signaling differ at several levels. The findings that Fas tyrosine phosphorylation is regulated by Src family kinases (SFKs) and the phosphatase SHP-1 and that Y291 phosphorylation primes clathrin-dependent Fas endocytosis, which contributes to Fas pro-survival signaling, reveals for the first time the mechanistic link between SFK/SHP-1-dependent Fas tyrosine phosphorylation, internalization route, and signaling choice. We also demonstrate that levels of phosphorylated Y232 and Y291 differ among human cancer types and differentially respond to anticancer therapy, suggesting context-dependent involvement of Fas phosphorylation in cancer. This report provides a new insight into the control of TNF receptor multisignaling by receptor phosphorylation and its implication in cancer biology, which brings us a step closer to overcoming the challenge in handling Fas signaling in treatments of cancer as well as other pathologies such as autoimmune and degenerative diseases.


Assuntos
Evolução Molecular , Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptor fas/metabolismo , Quinases da Família src/metabolismo , Sequência de Aminoácidos , Apoptose , Endocitose , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Estrutura Terciária de Proteína
2.
Cancer Lett ; 354(2): 355-64, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25199763

RESUMO

Fas and PI3K/Akt signaling pathways pivotally impact on cancer cell death and survival respectively and are considered as promising targets for innovative anticancer therapies. To better characterize the combination effect of PI3K/Akt inhibitors and Fas agonists and understand the profile of the interaction between PI3K/Akt and Fas signaling, we qualitatively and quantitatively evaluated the combination effect of PI3K/Akt inhibitors LY294002, Akt inhibitor VIII and FasL. At the concentration that can block cell cycle progression and DNA synthesis but not elicit apoptosis, these inhibitors potentiate FasL to induce apoptosis. At higher concentrations, when the PI3K/Akt inhibitors induce apoptosis, they synergize FasL to induce apoptosis. In addition, PI3K/Akt inhibition significantly facilitates the Fas-mediated apoptotic signaling. Understanding the combination effects between PI3K/Akt inhibition and Fas activation not only leads to rational design of effective combination therapy of PI3K/Akt inhibitors but also improve our knowledge about the impact of PI3K-Akt pathway on Fas signaling and the potential modulation of innate immune system by PI3K-Akt-targeting drugs in anticancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias do Colo/tratamento farmacológico , Proteína Ligante Fas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Receptor fas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cromonas/administração & dosagem , Cromonas/farmacologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Sinergismo Farmacológico , Proteína Ligante Fas/administração & dosagem , Proteína Ligante Fas/metabolismo , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Transfecção
3.
Mol Cell Biol ; 30(2): 470-80, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19917721

RESUMO

Muscle atrophy is a debilitating process associated with many chronic wasting diseases, like cancer, diabetes, sepsis, and renal failure. Rapid loss of muscle mass occurs mainly through the activation of protein breakdown by the ubiquitin proteasome pathway. Foxo3a transcription factor is critical for muscle atrophy, since it activates the expression of ubiquitin ligase Atrogin-1. In several models of atrophy, inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway induces nuclear import of Foxo3a through an Akt-dependent process. This study aimed to identify signaling pathways involved in the control of Foxo3a nuclear translocation in muscle cells. We observed that after nuclear import of Foxo3a by PI3K/Akt pathway inhibition, activation of stress-activated protein kinase (SAPK) pathways induced nuclear export of Foxo3a through CRM1. This mechanism involved the c-Jun NH(2)-terminal kinase (JNK) signaling pathway and was independent of Akt. Likewise, we showed that inhibition of p38 induced a massive nuclear relocalization of Foxo3a. Our results thus suggest that SAPKs are involved in the control of Foxo3a nucleocytoplasmic translocation in C2C12 cells. Moreover, activation of SAPKs decreases the expression of Atrogin-1, and stable C2C12 myotubes, in which the p38 pathway is constitutively activated, present partial protection against atrophy.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Células Musculares/metabolismo , Atrofia Muscular/metabolismo , Animais , Antracenos/farmacologia , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cromonas/farmacologia , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/efeitos dos fármacos , Humanos , Isoquinolinas/farmacologia , Carioferinas/efeitos dos fármacos , Carioferinas/metabolismo , MAP Quinase Quinase 3/efeitos dos fármacos , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 4/efeitos dos fármacos , MAP Quinase Quinase 4/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Morfolinas/farmacologia , Células Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/efeitos dos fármacos , Proteínas Musculares/metabolismo , Atrofia Muscular/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Ligases SKP Culina F-Box/efeitos dos fármacos , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína Exportina 1
4.
Mol Cell Biol ; 29(24): 6515-26, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19822663

RESUMO

It has been well established that amino acid availability can control gene expression. Previous studies have shown that amino acid depletion induces transcription of the ATF3 (activation transcription factor 3) gene through an amino acid response element (AARE) located in its promoter. This event requires phosphorylation of activating transcription factor 2 (ATF2), a constitutive AARE-bound factor. To identify the signaling cascade leading to phosphorylation of ATF2 in response to amino acid starvation, we used an individual gene knockdown approach by small interfering RNA transfection. We identified the mitogen-activated protein kinase (MAPK) module MEKK1/MKK7/JNK2 as the pathway responsible for ATF2 phosphorylation on the threonine 69 (Thr69) and Thr71 residues. Then, we progressed backwards up the signal transduction pathway and showed that the GTPase Rac1/Cdc42 and the protein Galpha12 control the MAPK module, ATF2 phosphorylation, and AARE-dependent transcription. Taken together, our data reveal a new signaling pathway activated by amino acid starvation leading to ATF2 phosphorylation and subsequently positively affecting the transcription of amino acid-regulated genes.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Aminoácidos/deficiência , Transdução de Sinais/fisiologia , Inanição/metabolismo , Fator 2 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Adulto , Animais , Linhagem Celular , Ativação Enzimática , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteína Quinase 9 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos , Fosforilação , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Serina-Treonina Quinases TOR , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Biochem Biophys Res Commun ; 366(4): 944-50, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18082627

RESUMO

Kv channels represent new important targets for the control of cancer growth and a better understanding of their regulating pathways in cancer cells is necessary to develop therapeutic strategies. In this study, we have addressed the putative modulation of Kv by MAP kinases through a pharmacological approach. We have found that the commonly used JNK inhibitor SP600125 strongly inhibits Kv channels through a JNK-independent pathway, likely interacting directly with the channels at the external side of the membrane. Our results indicate that the use of this compound may produce misleading conclusions for the role of JNK in cell cycle.


Assuntos
Antracenos/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Linhagem Celular Tumoral , Cinamatos/farmacologia , Ciclopropanos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células Jurkat , Neoplasias/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Exp Cell Res ; 313(11): 2417-26, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17462629

RESUMO

BTBD1 is a recently cloned BTB-domain-containing protein particularly expressed in skeletal muscle and interacting with DNA topoisomerase 1 (Topo1), a key enzyme of cell survival. We have previously demonstrated that stable overexpression of a N-terminal truncated BTBD1 inhibited ex vivo myogenesis but not adipogenesis of pluripotent C2C12 cells. Here, BTBD1 expression was studied in three models of cellular differentiation: myogenesis (C2C12 cells), adipogenesis (3T3-L1 cells) and osteogenesis (hMADS cells). BTBD1 mRNA was found to be upregulated during myogenesis. At the opposite, we have not observed BTBD1 upregulation in an altered myogenesis cellular model and we observed a downregulation of BTBD1 mRNA expression in adipogenesis. Interestingly, amounts of Topo1 protein, but not Topo1 mRNA, were found to be modulated at the opposite of BTBD1 mRNA. No variation of BTBD1 expression was measured during osteogenesis. Taken together, these results indicate that BTBD1 mRNA is specifically regulated during myogenic and adipogenic differentiation, in relation with Topo1 expression. Moreover, they corroborate observations made previously with truncated BTBD1 and show that BTBD1 is a key protein of balance between adipogenesis and myogenesis. Finally, a transcriptome analysis gave molecular clues to decipher BTBD1 role, with an emphasis on the involvement in ubiquitin/proteasome degradation pathway.


Assuntos
Adipogenia/genética , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Muscular/genética , Osteogênese/genética , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Ubiquitina/metabolismo
7.
Mech Ageing Dev ; 127(10): 794-801, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16949134

RESUMO

A phenotypic feature of aging is skeletal muscle wasting. It is characterized by a loss of muscle mass and strength. Age-related loss of muscle mass occurs through a reduction in the rate of protein synthesis, an increase in protein degradation or a combination of both. However, the underlying mechanism is still poorly understood. To test the hypothesis that the ubiquitin-proteasome pathway contributes to this phenomenon, we studied MuRF1 and atrogin-1 expression in Tibialis Anterior muscle of aged rats. These two E3 ligases are considered as sensitive markers of muscle protein degradation by the ubiquitin-proteasome system. Our results revealed that, in skeletal muscle of aged rats, the decline in muscle mass is accompanied by an increase in the level of oxidized proteins and ubiquitin conjugates (90%) whereas the functionality of the proteasome remains constant compared to young rats. Furthermore, the level of both MuRF1 and atrogin-1 mRNA is markedly up-regulated in aged muscle (respectively x2 and x2.5). Taken together these data argue for the involvement of the ubiquitin-proteasome pathway in sarcopenia of fast-twitch muscle, in particular through increased expression of MuRF1 and atrogin-1. Moreover, we observed a decrease in the IGF-1/Akt signalling pathways and elevated level of TNFalpha mRNA in aged rat muscle. Therefore, IGF-1/Akt and TNFalpha represent potential mediators implicated in the regulation of MuRF1 and atrogin-1 genes during aging.


Assuntos
Envelhecimento , Regulação da Expressão Gênica , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Proteínas Ligases SKP Culina F-Box/biossíntese , Ubiquitina-Proteína Ligases/biossíntese , Animais , Carbono/química , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteínas com Motivo Tripartido , Fator de Necrose Tumoral alfa/metabolismo
8.
Dig Dis Sci ; 51(8): 1443-53, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16838116

RESUMO

Involvement of mitogen-activated protein (MAPK) in inflammatory bowel disease (IBD) remains enigmatic. We sought to evaluate the expression and activity of p38 and JNK MAPK in IBD and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis; and the effects of a p38 inhibitor, SB203580, in TNBS colitis. P38 and JNK were quantified in colonic mucosa of 28 IBD patients and 19 controls and in 77 TNBS or control mice treated or not with SB203580. Colitis severity was assessed by survival, macroscopic and microscopic scoring, and molecular markers. Expression and activity of p38 and JNK were similar in IBD patients and controls and not modified by inflammation. In mice, p38 and JNK expression or activity did not increase following the induction of colitis. SB203580 decreased the p38 activity but displayed no clinical nor biological therapeutic effect. In conclusion, these results minimize the role of p38 and JNK in inflammatory colitis and the interest of p38 as a therapeutic target in IBD.


Assuntos
Colite Ulcerativa/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adulto , Animais , Western Blotting , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Feminino , Expressão Gênica , Humanos , Imidazóis/uso terapêutico , Doenças Inflamatórias Intestinais/genética , Interleucina-1/genética , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Prognóstico , Piridinas/uso terapêutico , RNA Mensageiro/genética , Ácido Trinitrobenzenossulfônico/toxicidade , Fator de Necrose Tumoral alfa/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
10.
Cell Signal ; 16(12): 1405-15, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15381256

RESUMO

The molecular signalling pathways governing skeletal muscle differentiation remain unclear. Recent work has demonstrated that both the phosphatidylinositol 3-kinase (PI3K)/Akt and p38 pathways play important roles in myogenesis. Here, we describe the interactions between these pathways in C2C12 cells. Overall, our results suggest that Akt acts downstream of p38 in myogenic cell differentiation. Activating the p38 pathway results in the concurrent activation of Akt; conversely, activating Akt does not affect p38. We have analysed Akt messenger RNA and protein levels in a C2C12 cell line stably expressing a dominant negative (DN) form of the p38 activator MKK3. Compared to control cells, this cell line exhibits reduced levels of Akt messenger RNA and total protein. In addition, blocking the p38 pathway during differentiation inhibits Akt activation. Our results show for the first time that p38 can directly affect Akt at the transcriptional level as well as at the protein activation level during myogenic differentiation.


Assuntos
Músculos/citologia , Músculos/enzimologia , Ativação Transcricional , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Northern Blotting , Diferenciação Celular , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Genes Dominantes , Immunoblotting , Camundongos , Modelos Biológicos , Miogenina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Transcrição Gênica , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
J Gen Physiol ; 122(1): 5-16, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12810851

RESUMO

The osmotic response of system A for neutral amino acid transport has been related to the adaptive response of this transport system to amino acid starvation. In a previous study (Ruiz-Montasell, B., M. Gómez-Angelats, F.J. Casado, A. Felipe, J.D. McGivan, and M. Pastor-Anglada. 1994. Proc. Natl. Acad. Sci. USA. 91:9569-9573), a model was proposed in which both responses were mediated by different mechanisms. The recent cloning of several isoforms of system A as well as the elucidation of a variety of signal transduction pathways involved in stress responses allow to test this model. SAT2 mRNA levels increased after amino acid deprivation but not after hyperosmotic shock. Inhibition of p38 activity or transfection with a dominant negative p38 did not alter the response to amino acid starvation but partially blocked the hypertonicity response. Inhibition of the ERK pathway resulted in full inhibition of the adaptive response of system A and no increase in SAT2 mRNA levels, without modifying the response to hyperosmolarity. Similar results were obtained after transfection with a dominant negative JNK1. The CDK2 inhibitor peptide-II decreased the osmotic response in a dose-dependent manner but did not have any effect on the adaptive response of system A. In summary, the previously proposed model of up-regulation of system A after hypertonic shock or after amino acid starvation by separate mechanisms is now confirmed and the two signal transduction pathways have been identified. The involvement of a CDK-cyclin complex in the osmotic response of system A links the activity of this transporter to the increase in cell volume previous to the entry in a new cell division cycle.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Transdução de Sinais/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Adaptação Fisiológica , Sistema A de Transporte de Aminoácidos/genética , Animais , Células CHO , Proteínas de Transporte/metabolismo , Cricetinae , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/metabolismo , Proteína Quinase 8 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Isoformas de Proteínas , RNA Mensageiro/análise , Proteínas Quinases p38 Ativadas por Mitógeno
12.
Am J Physiol Cell Physiol ; 284(3): C658-66, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12444016

RESUMO

The signal transduction pathways connecting cell surface receptors to the activation of muscle-specific promoters and leading to myogenesis are still largely unknown. Recently, a contribution of the p38 mitogen-activated protein kinase (MAPK) pathway to this process was evoked through the use of pharmacological inhibitors. We used several mutants of the kinases composing this pathway to modulate the activity of the muscle-specific myosin light chain and myogenin promoters in C2C12 cells by transient transfections. In addition, we show for the first time, using a stable C2C12 cell line expressing a dominant-negative form of the p38 activator MAPK kinase (MKK)3, that a functional p38 MAPK pathway is indeed required for terminal muscle cell differentiation. The most obvious phenotype of this cell line, besides the inhibition of the activation of p38, is its inability to undergo terminal differentiation. This phenotype is accompanied by a drastic inhibition of cell cycle and myogenesis markers such as p21, p27, MyoD, and troponin T, as well as a profound disorganization of the cytoskeleton.


Assuntos
Diferenciação Celular/genética , MAP Quinase Quinase Quinase 1 , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fibras Musculares Esqueléticas/enzimologia , Músculo Esquelético/embriologia , Músculo Esquelético/enzimologia , Mioblastos Esqueléticos/enzimologia , Proteínas Tirosina Quinases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27 , MAP Quinase Quinase 3 , Camundongos , Proteína Quinase 14 Ativada por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/genética , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Proteína MyoD/antagonistas & inibidores , Proteína MyoD/metabolismo , Mioblastos Esqueléticos/citologia , Miogenina/antagonistas & inibidores , Miogenina/metabolismo , Cadeias Pesadas de Miosina/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/antagonistas & inibidores , Cadeias Leves de Miosina/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...