Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 873: 162395, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842575

RESUMO

Patagonian aquatic environments have been invaded since the end of the last century by different species of salmonids. Knowing the natal origin and homing/straying rate of the salmonids in colonised environments is essential to understanding the dispersal mechanisms and developing management plans. In the last two decades, Chinook salmon Oncorhynchus tshawytscha showed the greatest natural dispersal capacity in Patagonia. The main goal of this study was to evaluate the environmental strontium isotope ratio (87Sr/86Sr) as a potential natural tag to infer the natal origin and ontogenetic habitat use of salmonids in Patagonia, specifically Chinook salmon. 87Sr/86Sr ratio was determined in water samples from 26 sites distributed in 14 Atlantic and Pacific basins in low and high water seasons. Environmental 87Sr/86Sr showed greater spatial than temporal variation, revealing great potential as a tool to infer the natal origin and life history of several migratory fish species in Patagonia. Otolith core-to-edge 87Sr/86Sr profiles were also analysed in 108 Chinook salmon from six basins. A cluster analysis based on the Unweighted Pair Group method (UPGMA) and Euclidean distances without prior classification grouped the sampled rivers into five main groups with significantly different (p < 0.05) isotopic ratios, sometimes integrated basins with different slopes (Atlantic or Pacific). The cluster analysis based on the natal 87Sr/86Sr period in otolith (∼natal origin) showed clear segregation between the Atlantic and Pacific samples. A mismatch between water and otolith natal 87Sr/86Sr ratio was detected in some Atlantic basins (e.g. De las Vueltas River in Santa Cruz Basin) and Pacific (e.g. Liquiñe Basin) and, which could be explained either by straying behaviours or by large geochemical variability between tributaries, within river systems. Our results showed that 87Sr/86Sr is a useful natural tag to trace the life history of migratory fishes in Patagonia, especially for invasive species such as Chinook salmon.


Assuntos
Rios , Salmão , Animais , Ecossistema , Água , Isótopos
2.
Molecules ; 24(1)2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602678

RESUMO

CaCO3 nanoparticles of around 60 nm were obtained by a co-precipitation method and used as filler to prepare low-density polyethylene (LDPE) composites by melt blending. The nanoparticles were also organically modified with oleic acid (O-CaCO3) in order to improve their interaction with the LDPE matrix. By adding 3 and 5 wt% of nanofillers, the mechanical properties under tensile conditions of the polymer matrix improved around 29%. The pure LDPE sample and the nanocomposites with 5 wt% CaCO3 were photoaged by ultraviolet (UV) irradiation during 35 days and the carbonyl index (CI), degree of crystallinity (χc), and Young's modulus were measured at different times. After photoaging, the LDPE/CaCO3 nanocomposites increased the percent crystallinity (χc), the CI, and Young's modulus as compared to the pure polymer. Moreover, the viscosity of the photoaged nanocomposite was lower than that of photoaged pure LDPE, while scanning electron microscopy (SEM) analysis showed that after photoaging the nanocomposites presented cavities around the nanoparticles. These difference showed that the presence of CaCO3 nanoparticles accelerate the photo-degradation of the polymer matrix. Our results show that the addition of CaCO3 nanoparticles into an LDPE polymer matrix allows future developments of more sustainable polyethylene materials that could be applied as films in agriculture. These LDPE-CaCO3 nanocomposites open the opportunity to improve the low degradation of the LDPE without sacrificing the polymer's behavior, allowing future development of novel eco-friendly polymers.


Assuntos
Carbonato de Cálcio/química , Ácido Oleico/química , Polietileno/química , Módulo de Elasticidade , Nanocompostos/química , Nanopartículas/química , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...