RESUMO
The indiscriminate use of petroleum-based polymers and plastics for single-use food packaging has led to serious environmental problems due the non-biodegradable characteristics. Thus, much attention has been focused on the research of new biobased and biodegradable materials. Yeast and fungal biomass are low-cost and abundant sources of biopolymers with highly promising properties for the development of biodegradable materials. This study aimed to select a preparation method to develop new biodegradable films using the whole biomass of Paecilomyces variotii subjected to successive physical treatments including ultrasonic homogenization (US) and heat treatment. Sterilization process had an important impact on the final filmogenic dispersion and mechanical properties of the films. Longer US treatments produced a reduction in the particle size and the application of an intermediate UT treatment contributed favorably to the breaking of agglomerates allowing the second US treatment to be more effective, achieving an ordered network with a more uniform distribution. Samples that were not filtrated after the sterilization process presented mechanical properties similar to plasticized materials. On the other hand, the filtration process after sterilization eliminated soluble and hydratable compounds, which produced a reduction in the hydration of the films.
Assuntos
Biomassa , Embalagem de Alimentos , Paecilomyces , Esterilização , Paecilomyces/metabolismo , Paecilomyces/química , Embalagem de Alimentos/métodos , Esterilização/métodos , Biopolímeros/química , Biopolímeros/metabolismo , Biodegradação Ambiental , Temperatura AltaRESUMO
Millions of workers are required to wear reusable respirators in several industries worldwide. Reusable respirators include filters that protect workers against harmful dust, smoke, gases, and vapors. These hazards may cause cancer, lung impairment, and diseases. Respiratory protection is prone to failure or misuse, such as wearing respirators with filters out of service life and employees wearing respirators loosely. Currently, there are no commercial systems capable of reliably alerting of misuse of respiratory protective equipment during the workday shifts or provide early information about dangerous clogging levels of filters. This paper proposes a low energy and non-obtrusive functional building block with embedded electronics that enable breathing monitoring inside an industrial reusable respirator. The embedded electronic device collects multidimensional data from an integrated pressure, temperature, and relative humidity sensor inside a reusable industrial respirator in real time and sends it wirelessly to an external platform for further processing. Here, the calculation of instantaneous breathing rate and estimation of the filter's respirator fitting and clogging level is performed. The device was tested with ten healthy subjects in laboratory trials. The subjects were asked to wear industrial reusable respirator with the embedded electronic device attached inside. The signals measured with the system were compared with airflow signals measured with calibrated transducers for validation purposes. The correlation between the estimated breathing rates using pressure, temperature, and relative humidity with the reference signal (airflow) is 0.987, 0.988 and 0.989 respectively, showing that instantaneous breathing rate can be calculated accurately using the information from the embedded device. Moreover, respirator fitting (well-fitted or loose condition) and filter's clogging levels (≤60%, 80% and 100% clogging) also can be estimated using features extracted from absolute pressure measurements combined to statistical analysis ANOVA models. These experimental outputs represent promising results for further development of data-driven prediction models using machine learning techniques to determine filters end-of-service life. Furthermore, the proposed system would collect relevant data for real-time monitoring of workers' breathing conditions and respirator usage, helping to improve occupational safety and health in the workplace.
Assuntos
Dispositivos de Proteção Respiratória , Humanos , Gases , Respiração , EletrônicaRESUMO
Sensory analysis for stuffed cheese with Penicillium nalgiovense superficial growth using a descriptive analysis was performed. Cheeses were manufactured in a pilot plant. Penicillium nalgiovense was superficially inoculated and the cheeses were ripened at 12 °C and 90% relative humidity until packaged using a microperforated polyethylene film on day 14. The ripening process continued at either 5 °C or 12 °C for 21 days. Results showed that P. nalgiovense not only confers the external desirable appearance but also has a protective effect against dehydration process. Inoculated cheeses showed descriptors of odour and flavour associated with moulds. Ammonia notes were perceived only for inoculated cheeses on day 35 being more pronounced at 12 °C than 5 °C. The high fat content of the cheeses and the transparent and microperforated packaging might affect the oxidative stability of cheeses at the end of the ripening.
Assuntos
Queijo , Penicillium , Amônia , Queijo/análise , PolietilenosRESUMO
Considerable advances have been made toward understanding the cellular and molecular mechanism of wound healing, however, treatments for chronic wounds remain elusive. Emerging concepts utilizing mesenchymal stem cells (MSCs) from umbilical cord, adipose tissue and bone marrow have shown therapeutical advantages for wound healing. Based on this positive outcome, efforts to determine the optimal sources for MSCs are required in order to improve their migratory, angiogenic, immunomodulatory, and reparative abilities. An alternative source suitable for repetitive, non-invasive collection of MSCs is from the menstrual fluid (MenSCs), displaying a major practical advantage over other sources. This study aims to compare the biological functions and the transcriptomic pattern of MenSCs with umbilical cord MSCs in conditions resembling the wound microenvironment. Consequently, we correlate the specific gene expression signature from MenSCs with changes of the wound matrix signals in vivo. The direct comparison revealed a superior clonogenic and migratory potential of MenSCs as well as a beneficial effect of their secretome on human dermal fibroblast migration in vitro. Furthermore, MenSCs showed increased immunomodulatory properties, inhibiting T-cell proliferation in co-culture. We further, investigated the expression of selected genes involved in wound repair (growth factors, cytokines, chemokines, AMPs, MMPs) and found considerably higher expression levels in MenSCs (ANGPT1 1.5-fold; PDGFA 1.8-fold; PDGFB 791-fold; MMP3 21.6-fold; ELN 13.4-fold; and MMP10 9.2-fold). This difference became more pronounced under a pro-inflammatory stimulation, resembling wound bed conditions. Locally applied in a murine excisional wound splinting model, MenSCs showed a significantly improved wound closure after 14 days, as well as enhanced neovascularization, compared to the untreated group. Interestingly, analysis of excised wound tissue revealed a significantly higher expression of VEGF (1.42-fold) among other factors, translating an important conversion of the matrix signals in the wound site. Furthermore, histological analysis of the wound tissue from MenSCs-treated group displayed a more mature robust vascular network and a genuinely higher collagen content confirming the pro-angiogenic and reparative effect of MenSCs treatment. In conclusion, the superior clonogenicity, immunosuppressive and migration potential in combination with specific paracrine signature of MenSCs, resulted in an enhanced wound healing and cutaneous regeneration process.