Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Planta ; 260(3): 55, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020000

RESUMO

MAIN CONCLUSIONS: In contrast to Neltuma species, S. tamarugo exhibited higher stress tolerance, maintaining photosynthetic performance through enhanced gene expression and metabolites. Differentially accumulated metabolites include chlorophyll and carotenoids and accumulation of non-nitrogen osmoprotectants. Plant species have developed different adaptive strategies to live under extreme environmental conditions. Hypothetically, extremophyte species present a unique configuration of physiological functions that prioritize stress-tolerance mechanisms while carefully managing resource allocation for photosynthesis. This could be particularly challenging under a multi-stress environment, where the synthesis of multiple and sequential molecular mechanisms is induced. We explored this hypothesis in three phylogenetically related woody species co-occurring in the Atacama Desert, Strombocarpa tamarugo, Neltuma alba, and Neltuma chilensis, by analyzing their leaf dehydration and freezing tolerance and by characterizing their photosynthetic performance under natural growth conditions. Besides, the transcriptomic profiling, biochemical analyses of leaf pigments, and metabolite analysis by untargeted metabolomics were conducted to study gene expression and metabolomic landscape within this challenging multi-stress environment. S. tamarugo showed a higher photosynthetic capacity and leaf stress tolerance than the other species. In this species, a multifactorial response was observed, which involves high photochemical activity associated with a higher content of chlorophylls and ß-carotene. The oxidative damage of the photosynthetic apparatus is probably attenuated by the synthesis of complex antioxidant molecules in the three species, but S. tamarugo showed the highest antioxidant capacity. Comparative transcriptomic and metabolomic analyses among the species showed the differential expression of genes involved in the biosynthetic pathways of key stress-related metabolites. Moreover, the synthesis of non-nitrogen osmoprotectant molecules, such as ciceritol and mannitol in S. tamarugo, would allow the nitrogen allocation to support its high photosynthetic capacity without compromising leaf dehydration tolerance and freezing stress avoidance.


Assuntos
Clima Desértico , Fotossíntese , Estresse Fisiológico , Transcriptoma , Fotossíntese/genética , Estresse Fisiológico/genética , Clorofila/metabolismo , Metabolômica , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Carotenoides/metabolismo , Metaboloma/genética , Chile
2.
Plants (Basel) ; 13(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38999686

RESUMO

In this study, the physiological performance and fruit quality responses of the highbush blueberry (Vaccinium corymbosum) cultivar Legacy to high temperatures (HTs) were evaluated in a field experiment. Three-year-old V. corymbosum plants were exposed to two temperature treatments between fruit load set and harvest during the 2022/2023 season: (i) ambient temperature (AT) and (ii) high temperature (HT) (5 °C ± 1 °C above ambient temperature). A chamber covered with transparent polyethylene (100 µm thick) was used to apply the HT treatment. In our study, the diurnal temperature was maintained with a difference of 5.03 °C ± 0.12 °C between the AT and HT treatments. Our findings indicated that HT significantly decreased CO2 assimilation (Pn) by 45% and stomatal conductance (gs) by 35.2% compared to the AT treatment. By contrast, the intercellular CO2 concentration (Ci) showed higher levels (about 6%) in HT plants than in AT plants. Fruit quality analyses revealed that the fruit weight and equatorial diameter decreased by 39% and 13%, respectively, in the HT treatment compared to the AT treatment. By contrast, the firmness and total soluble solids (TSS) were higher in the HT treatment than in the AT treatment. Meanwhile, the titratable acidity showed no changes between temperature treatments. In our study, Pn reduction could be associated with stomatal and non-stomatal limitations under HT treatment. Although these findings improve our understanding of the impact of HTs on fruit growth and quality in V. corymbosum, further biochemical and molecular studies are need.

3.
Plants (Basel) ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891361

RESUMO

Boron (B) is a micronutrient crucial for the growth, development, productivity, and quality of crops. However, in areas characterized by acid soil (pHwater < 5.0) and high rainfall, soil B concentration tends to decrease, leading to insufficient supply to crops. This study was aimed at determining the optimal rate of B fertilization to enhance Vaccinium corymbosum L. performance in acid conditions. One-year-old cultivars with contrasting Al resistance (Al-sensitive Star and Al-resistant Cargo) were used. Plants were conditioned in plastic pots containing 18 L of half-ionic-strength Hoagland solution (pH 4.5) for 2 weeks. Thereafter, the following B treatments were applied foliarly: control, without B application (distilled water), 200, 400, and 800 mg L-1 of B as Solubor® for up to 72 h. Photosynthetic performance, root and shoot B levels, antioxidants, and oxidative stress were evaluated. Root and shoot B concentrations increased with the increasing B application, being higher in leaves than in roots of both cultivars. Net photosynthesis decreased at 800 mg L-1 B supply and effective quantum yield of PSII at 72 h in all B treatments. Lipid peroxidation increased in both cultivars at 800 mg L-1 B treatment. Antioxidant activity increased in all B treatments in both cultivars; while, at 400 and 800 mg L-1 B, total phenols increased in leaves of cultivar Star and decreased in cultivar Cargo. In conclusion, optimal B foliar application for highbush blueberry appears to be around 400 mg L-1 B. The appropriate B foliar application could help mitigate potential stress-induced problems in highbush blueberry cultivation. However, the optimal foliar B application should be confirmed in field experiments to help the farmers manage B nutrition.

4.
Front Plant Sci ; 15: 1332459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410729

RESUMO

Boron (B) is an essential microelement for plants, and its deficiency can lead to impaired development and function. Around 50% of arable land in the world is acidic, and low pH in the soil solution decreases availability of several essential mineral elements, including B, magnesium (Mg), calcium (Ca), and potassium (K). Plants take up soil B in the form of boric acid (H3BO3) in acidic soil or tetrahydroxy borate [B(OH)4]- at neutral or alkaline pH. Boron can participate directly or indirectly in plant metabolism, including in the synthesis of the cell wall and plasma membrane, in carbohydrate and protein metabolism, and in the formation of ribonucleic acid (RNA). In addition, B interacts with other nutrients such as Ca, nitrogen (N), phosphorus (P), K, and zinc (Zn). In this review, we discuss the mechanisms of B uptake, absorption, and accumulation and its interactions with other elements, and how it contributes to the adaptation of plants to different environmental conditions. We also discuss potential B-mediated networks at the physiological and molecular levels involved in plant growth and development.

5.
BMC Plant Biol ; 24(1): 146, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413850

RESUMO

BACKGROUND: Titanium dioxide nanoparticles (TiO2 NPs) have been reported to have contrasting effects on plant physiology, while their effects on sugar, protein, and amino acid metabolism are poorly understood. In this work, we evaluated the effects of TiO2 NPs on physiological and agronomical traits of tomato (Solanum lycopersicum L.) seedlings. Tomato seeds were treated with TiO2 NPs (1000 and 2000 mg L- 1), TiO2 microparticles (µPs, 2000 mg L- 1) as the size control, and ultrapure water as negative control. RESULTS: The dry matter of stems (DMs), leaves (DMl) and total dry matter (DMt) decreased as particle concentration increased. This trend was also observed in the maximum quantum yield of light-adapted photosystem II (PSII) (Fv´/Fm´), the effective quantum yield of PSII (ΦPSII), and net photosynthesis (Pn). The concentrations of sugars, total soluble proteins, and total free amino acids were unaffected, but there were differences in the daily dynamics of these compounds among the treatments. CONCLUSION: Our results suggest that treating tomato seeds with TiO2 might affect PSII performance, net photosynthesis and decrease biomass production, associated with a concentration- and size-related effect of TiO2 particles.


Assuntos
Nanopartículas , Solanum lycopersicum , Titânio , Plântula/metabolismo , Clorofila/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
6.
Plants (Basel) ; 12(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765440

RESUMO

Salicylic acid (SA) application is a promising agronomic tool. However, studies under field conditions are required, to confirm the potential benefits of SA. Thus, SA application was evaluated under field conditions for its effect on abscisic acid levels, antioxidant related-parameters, fruit quality, and yield in Aristotelia chilensis subjected to different levels of irrigation. During two growing seasons, three-year-old plants under field conditions were subjected to full irrigation (FI: 100% of reference evapotranspiration (ETo), and deficit irrigation (DI: 60% ETo). During each growth season, a single application of 0.5 mM SA was performed at fruit color change by spraying fruits and leaves of both irrigation treatments. The results showed that DI plants experienced moderate water stress (-1.3 MPa), which increased ABA levels and oxidative stress in the leaves. The SA application facilitated the recovery of all physiological parameters under the DI condition, increasing fruit fresh weight by 44%, with a 27% increase in fruit dry weight, a 1 mm increase in equatorial diameter, a 27% improvement in yield per plant and a 27% increase in total yield, with lesser oxidative stress and tissue ABA levels in leaves. Also, SA application significantly increased (by about 10%) the values of fruit trait variables such as soluble solids, total phenols, and antioxidant activity, with the exceptions of titratable acidity and total anthocyanins, which did not vary. The results demonstrated that SA application might be used as an agronomic strategy to improve fruit yield and quality, representing a saving of 40% regarding water use.

8.
FEMS Microbiol Ecol ; 98(11)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36040342

RESUMO

In the Antarctic Peninsula, increases in mean annual temperature are associated with the coverage and population density of the two Antarctic vascular plant species-Deschampsia antarctica and Colobanthus quitensis-potentially modifying critical soil processes. In this study, we characterized the diversity and community composition of active microorganisms inhabiting the vascular plant rhizosphere in two sites with contrasting vegetation cover in King George Island, Western Antarctic Peninsula. We assessed the interplay between soil physicochemical properties and microbial diversity and composition, evaluating the effect of an in situ experimental warming on the microbial communities of the rhizosphere from D. antarctica and C. quitensis. Bacteria and Eukarya showed different responses to warming in both sites, and the effect was more noticeable in microbial eukaryotes from the low vegetation site. Furthermore, important changes were found in the relative abundance of Tepidisphaerales (Bacteria) and Ciliophora (Eukarya) between warming and control treatments. Our results showed that rhizosphere eukaryal communities are more sensitive to in situ warming than bacterial communities. Overall, our results indicate that vegetation drives the response of the active fraction of the microbial communities from the rhizosphere of Antarctic vascular plants to soil warming.


Assuntos
Microbiota , Rizosfera , Solo , Regiões Antárticas , Microbiologia do Solo , Bactérias/genética
9.
Plants (Basel) ; 11(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35270109

RESUMO

Salicylic acid (SA) has been shown to ameliorate drought stress. However, physiological and biochemical mechanisms involved in drought stress tolerance induced by SA in plants have not been well understood. Thus, this study aimed to study the role of SA application on enzymatic and non-enzymatic antioxidants, photosynthetic performance, and plant growth in A. chilensis plants subjected to moderate drought stress. One-year-old A. chilensis plants were subjected to 100% and 60% of field capacity. When plants reached moderate drought stress (average of stem water potential of -1.0 MPa, considered as moderate drought stress), a single SA application was performed on plants. Then, physiological and biochemical features were determined at different times during 14 days. Our study showed that SA application increased 13.5% plant growth and recovered 41.9% AN and 40.7% gs in drought-stressed plants on day 3 compared to drought-stressed plants without SA application. Interestingly, SOD and APX activities were increased 85% and 60%, respectively, in drought-stressed SA-treated plants on day 3. Likewise, SA improved 30% total phenolic content and 60% antioxidant capacity in drought-stressed A. chilensis plants. Our study provides insight into the SA mechanism to tolerate moderate drought stress in A. chilensis plants.

10.
Plants (Basel) ; 11(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336599

RESUMO

Salinization of soils and freshwater resources by natural processes and/or human activities has become an increasing issue that affects environmental services and socioeconomic relations. In addition, salinization jeopardizes agroecosystems, inducing salt stress in most cultivated plants (nutrient deficiency, pH and oxidative stress, biomass reduction), and directly affects the quality and quantity of food production. Depending on the type of salt/stress (alkaline or pH-neutral), specific approaches and solutions should be applied to ameliorate the situation on-site. Various agro-hydrotechnical (soil and water conservation, reduced tillage, mulching, rainwater harvesting, irrigation and drainage, control of seawater intrusion), biological (agroforestry, multi-cropping, cultivation of salt-resistant species, bacterial inoculation, promotion of mycorrhiza, grafting with salt-resistant rootstocks), chemical (application of organic and mineral amendments, phytohormones), bio-ecological (breeding, desalination, application of nano-based products, seed biopriming), and/or institutional solutions (salinity monitoring, integrated national and regional strategies) are very effective against salinity/salt stress and numerous other constraints. Advances in computer science (artificial intelligence, machine learning) provide rapid predictions of salinization processes from the field to the global scale, under numerous scenarios, including climate change. Thus, these results represent a comprehensive outcome and tool for a multidisciplinary approach to protect and control salinization, minimizing damages caused by salt stress.

11.
Plants (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616182

RESUMO

In rainy areas, sweet cherries are cultivated under plastic covers, preventing the cracking of the fruit but decreasing the firmness and acidity of the cherries. We evaluated the impact of plastic cover and pre-harvest K foliar application on quality parameters, antioxidant properties, and phenolic and organic acid compositions in fruits of sweet cherry cv. Regina of Southern Chile. Our results showed that K+ increased firmness, total soluble content, size, fruit weight, and titratable acidity at harvest, independent of the cover factor. The positive impacts of foliar K fertilization on anthocyanins, flavonoids, and phenolic acids could explain the higher antioxidant capacity of fruits. Our study revealed that the additional K doses applied increased malic acid, the main organic acid in cherry fruits, but only in fruits from uncovered trees. In covered trees, the effect was reversed. Citric acid was higher in fruit from covered trees. Our results indicated that tartaric acid also increased with the application of higher K doses; however, this acid was detectable only in uncovered tree fruit. Interestingly, all organic acids were lower in fruits produced in the lower canopy than those detected in fruits harvested from the upper canopy. This showed the positive impact of canopy light exposure on maintaining suitable acidity levels in sweet cherry fruits.

12.
Front Plant Sci ; 13: 1045894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704150

RESUMO

The potato (Solanum tuberosum L) is one of the four most important crops worldwide in production and consumption. It originated from South America along the Andes, where six hotspots of diversity known as subcenters of origin are described from Venezuela to Chiloe Island in Chile, and where the greatest diversity of potatoes in the world is found. Today, the use of ancestral genetic resources has gained significant relevance, recovering and producing foods with a greater nutrient content and beneficial to human health. Therefore, native potatoes possess a set of characteristics with great potential for use in potato breeding guided primarily to produce better feed, especially potatoes of the Chilotanum Group that are easily crossed with conventional varieties. The primary objective of this study was to evaluate 290 accessions of S. tuberosum subsp tuberosum belonging to the Chilotanum Group using a set of molecular markers and correlate them to its phenotypic traits for future use in breeding programs. For this purpose, 290 accessions were analysed through 22 specific microsatellites described previously, correlating them with flesh and skin colour, total phenolic content, and anthocyanin content. A division into groups considering all the 290 accessions resulted in two clusters using STRUCTURE analysis and seven different genetic clusters using UPGMA. The latter exhibited common phenotypic characteristics as well as anthocyanin content, strongly supporting a correlation between phenotypic traits and the genetic fingerprint. These results will enable breeders to focus on the development of potatoes with high polyphenol and anthocyanin content.

13.
Plants (Basel) ; 10(12)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34961201

RESUMO

Volcanic ash-derived soils are characterized by low pH (pH ≤ 5.5) with increased concentrations of aluminum (Al3+) and manganese (Mn2+), which decreases plant growth, fruit quality, and yield. Methyl jasmonate (MeJA) improves abiotic stress tolerance. Our work aimed to evaluate the application of MeJA's impact on the growth, antioxidant defense, and fruit quality of highbush blueberry grown under Al and Mn toxicity. A field assay was conducted with four-year-old bushes of highbush blueberry cultivar Legacy under eight treatments (Control, Al (87% of Al saturation), Mn (240 mg kg-1), and Al-Mn with and without MeJA application). Physiological, biochemical, and fruit quality parameters were measured. Growth rate significantly decreased with Al (20%), Mn (45%), and Al-Mn (40%). MeJA application recovered the growth rate. Photosynthetic parameters were not affected. Antioxidant activity increased under all treatments compared with controls, being higher with MeJA application. Total phenols (TP) were decreased in plants under Al (43%) and Mn (20%) compared with controls. MeJA application increased TP in all treatments. Fruits of bushes under Al and Mn toxicity with MeJA applications exhibited an increase in fruit firmness and weight, maintaining suitable contents of soluble solids. Our results provide insights about the beneficial effect of MeJA application on growth, antioxidant properties, and fruit quality of highbush blueberry plants grown in acid soils under Al and Mn toxicity.

14.
Plants (Basel) ; 10(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34961249

RESUMO

In rainy locations, sweet cherry is cultivated under plastic covers, which are useful to prevent fruit cracking but decrease cherry quality such as firmness and acidity. Here we evaluate the impact of pre-harvest K foliar applications on harvest and post-harvest fruit quality and condition of sweet cherry cultivated under plastic covers in southern Chile orchards. The study was performed on two commercial orchards (cv. Regina), located in different regions, during two consecutive seasons. In all cases, a conventional K regime (four sprays) was compared to an intensive K regimen (seven sprays). Results showed that cherries from the most southern region revealed lower acidity but higher soluble solids content weight and size. The intensive K regime improved the firmness and acidity of fruits of covered trees at harvest and post-harvest. Moreover, we found that condition defects were higher in fruits from un-covered trees and that trees grown under intensive K regime showed lower levels of cracking at harvest and pitting at post-harvest compared to trees treated with the conventional K regime. Otherwise, pedicel browning was inconsistently affected by K sprays. Our results revealed that an intensive K regime could improve the quality and condition of fruits at harvest and post-harvest in covered orchards of sweet cherry cv. Regina; however, the impacts can significantly vary depending on season and locality.

15.
Plant Physiol Biochem ; 169: 236-248, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34808466

RESUMO

Phosphorus (P) deficiency affects agricultural systems by limiting crop quality and yield. Studies have suggested that silicon (Si) improves P uptake in plants grown under P deficiency. However, the effects of Si on photosynthesis and carbohydrate metabolism under P stress remain unclear. We performed a hydroponic study using two wheat cultivars with contrasting sensitivity to P deficiency (Púrpura, sensitive; Fritz, semi-tolerant) that were exposed to P (0, 0.01, or 0.1 mM) and Si (0 or 2 mM), and we evaluated the photosynthetic performance and metabolic alterations. In plants from the sensitive cultivar undergoing P deficiency, Si application increased sucrose levels, starch breakdown and length of shoots, and also improved plant dry weight. In Fritz (the semi-tolerant cultivar), Si exposure reduced P concentration, and increased shoot length and P use efficiency (PUE) under P shortage. Interestingly, Si application altered cell wall composition, which was associated with higher mesophyll conductance and net CO2 assimilation in Fritz plants grown under P stress. Together, our results indicate that under P deficiency, Si nutrition positively affects photosynthesis and carbohydrate levels in a genotype-dependent manner. Furthermore, these results suggest that Si plays an important role in maintaining high photosynthetic rates in wheat plants undergoing P deficiency.


Assuntos
Silício , Triticum , Metabolismo dos Carboidratos , Fósforo , Fotossíntese , Folhas de Planta , Silício/farmacologia
16.
Front Plant Sci ; 12: 661542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135924

RESUMO

Boron (B) and zinc (Zn) are essential micronutrients of plant nutrition programs in orchards for securing the crop quality and yield. Although orchard supplementation with B and Zn is a common practice to overcome deficiencies or maintain their optimal levels, the efficiency of combined B and Zn spraying in relation to European hazelnut (Corylus avellana L.) phenological stage has not been investigated so far. Leaf and kernel mineral and functional traits were studied in cultivar Tonda di Giffoni after B and Zn spraying in four phenological stages. During the 2016/2017 season, 9-year-old trees were sprayed with B (0, 800, and 1,600 mg L-1) and Zn (0, 400, and 800 mg L-1) under three treatments: B0+Zn0, B800+Zn400, and B1600+Zn800 implemented in three spring application programs scheduled from October to December (P1: four times, P2: early two times, and P3: late two times). B and Zn treatments in P1 and P3 led to higher Zn concentration both in leaves and in kernels compared with non-sprayed trees. Stabilized nut production increased 2.5-fold under B800+Zn400 in all three programs. Kernel/nut ratio improved in both B+Zn treatments in P1 and P3, while the percentage of blank nuts was reduced compared with B0+Zn0. Increased radical scavenging activity in B+Zn-treated kernels and leaves was not attributed to the accumulation of phenolics in P3 compared with B0+Zn0, whereas B and Zn spraying reduced the level of lipid peroxidation in both studied organs. According to the results, combined B and Zn should be sprayed at the end of spring (P3) on hazelnut plantations in temperate areas such as Southern Chile, whereas early applications (P2) showed an irregularity in nut production and functional traits in nuts. Moderate and partialized rates of B and Zn and the time of implementation contribute to improving the quantitative and qualitative features crucial for future sustainable hazelnut production.

17.
Plant Physiol Biochem ; 161: 191-199, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33621863

RESUMO

Embothrium coccineum produces cluster roots (CR) to acquire sparingly soluble phosphorus (P) from the soil through the exudation of organic compounds. However, the physiological mechanisms involved in carbon drainage through its roots, as well as the gene expression involved in the biosynthesis of carboxylates and P uptake, have not been explored. In this work, we evaluated the relationship between carboxylate exudation rate and phosphoenolpyruvate carboxylase (PEPC) activity in roots of E. coccineum seedlings grown in a nutrient-poor volcanic substrate. Second, we evaluated CR formation and the expression of genes involved in the production of carboxylates (PEPC) and P uptake (PHT1) in E. coccineum seedlings grown under three different P supplies in hydroponic conditions. Our results showed that the carboxylate exudation rate was higher in CR than in non-CR, which was consistent with the higher PEPC activity in CR. We found higher CR formation in seedlings grown at 5 µM of P supply, concomitant with a higher expression of EcPEPC and EcPHT1 in CR than in non-CR. Overall, mature CR of E. coccineum seedlings growing on volcanic substrates poor in nutrients modify their metabolism compared to non-CR, enhancing carboxylate biosynthesis and subsequent carboxylate exudation. Additionally, transcriptional responses of EcPEPC and EcPHT1 were induced simultaneously when E. coccineum seedlings were grown in P-limited conditions that favored CR formation. Our results showed, for the first time, changes at the molecular level in CR of a species of the Proteaceae family, demonstrating that these root structures are highly specialized in P mobilization and uptake.


Assuntos
Fósforo , Proteaceae , Expressão Gênica , Raízes de Plantas , Solo
18.
Int. j. morphol ; 39(1): 25-31, feb. 2021. tab
Artigo em Espanhol | LILACS | ID: biblio-1385297

RESUMO

RESUMEN: En el semen criopreservado, los procesos de congelación/descongelación y posterior manipulación, dañan las células espermáticas provocando disminución de la capacidad fecundante de los espermatozoides descongelados. Estos procesos han sido asociados con el estado de estrés oxidativo (EO) inducido por altos niveles de especies reactivas de oxígeno (EROS), causando daño a la función y estructura espermática. Los espermatozoides descongelados pueden ser protegidos de este daño, con la adición de antioxidantes (AO) al medio de incubación. El fruto de Calafate (Berberis microphylla G. Forst.) posee una alta capacidad antioxidante, lo que hace interesante investigar el efecto de sus componentes antioxidantes en estos procesos biotecnológicos especialmente postdescongelación. El objetivo de este estudio fue determinar el efecto de la suplementación de extracto liofilizado de fruto de Calafate (ELC), sobre la calidad espermática post-descongelación. Previamente se caracterizó el ELC, determinando la actividad antioxidante y metabolitos como fenoles y antocianinas; posteriormente, espermatozoides de bovino descongelados fueron incubados en un medio base suplementado con diferentes concentraciones de ELC. Post-incubación se evaluó la motilidad progresiva; la viabilidad e integridad de la membrana plasmática (SYBR14- PI) y acrosomal (FITC-PNA/PI) y la peroxidación lipídica (BODIPY) por citometría de flujo. La caracterización de ELC demostró que tanto la actividad antioxidante como los fenoles y antocianinas incrementan concomitante con el aumento de la concentración de ELC. La adición de ELC al medio de incubación, dependiendo de la concentración y tiempo de incubación, sería eficaz en proteger la motilidad, viabilidad e integridad de la membrana plasmática y disminuir la lipoperoxidación en los espermatozoides de bovino descongelados.


SUMMARY: In cryopreserved semen, the freezing/thawing process following of manipulation, damage the sperm cell, decreasing the fertilizing capacity of the thawed sperm; being one of the main factors of this damage the oxidative stress. The sperm once thawed can be protected from this damage, with the addition of antioxidants to the incubation medium. The Calafate fruit (Berberis microphylla G. Forst.) has a high antioxidant capacity, making it an interesting resource for investigating the effect of its antioxidant components on biotechnological processes. The objective of this study was to determine the effect of supplementation of Calafate fruit lyophilized extract (ELC) on sperm quality. The lyophilized extract of the Calafate fruit was characterized, determining the antioxidant activity and metabolites such as phenols and anthocyanins; subsequently, thawed bovine sperm were incubated in a medium supplemented with different concentrations of ELC. Post-incubation, progressive motility was evaluated. By flow cytometry, the viability and integrity of the plasma (SYBR14-PI), and acrosomal (FITC-PNA / PI), as well as lipid peroxidation (BODIPY), was determined. The characterization of Calafate fruits lyophilized extract indicated that antioxidant activity, phenols and anthocyanins increased concomitantly with the increase of dose extract used. The addition of ELC to the incubation medium, depending on the concentration and incubation time, would be effective to protect motility, viability and integrity of the plasma membrane and decreased lipid peroxidation in thawed bovine sperm.


Assuntos
Animais , Bovinos , Sêmen/efeitos dos fármacos , Extratos Vegetais/farmacologia , Berberis/química , Antioxidantes/farmacologia , Fenóis/análise , Sêmen/fisiologia , Motilidade dos Espermatozoides/fisiologia , Extratos Vegetais/química , Peroxidação de Lipídeos , Criopreservação , Membrana Celular , Espécies Reativas de Oxigênio , Estresse Oxidativo , Incubadoras , Antocianinas/análise , Antioxidantes/química
19.
Mol Biol Rep ; 48(2): 1579-1587, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33502700

RESUMO

Stomatal closure is a common adaptation response of plants to the onset of drought condition and its regulation is controlled by transcription factors. MYB60, a transcription factor involved in the regulation of light-induced stomatal opening, has been characterized in arabidopsis and grapevine. In this work, we studied the role of MYB60 homolog SIMYB60 in tomato plants. We identified, isolated, and sequenced the SIMYB60 coding sequence, and found domains and motifs characteristic of other MYB60 proteins. We determined that SlMYB60 is mainly expressed in leaves, and its expression is repressed by abscisic acid. Next, we isolated a putative promoter region containing regulatory elements responsible for guard cell expression and other putative regulatory elements related to ABA repression and vascular tissue expression. Protein localization assays demonstrated that SlMYB60 localizes to the nucleus. Finally, SlMYB60 is able to complement the mutant phenotype of atmyb60-1 in Arabidopsis. Together, these results indicate that SlMYB60 is the homologous gene in tomato and potentially offer a molecular target to improve crops.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Secas , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sequências Reguladoras de Ácido Nucleico/genética
20.
Plant Physiol Biochem ; 158: 454-465, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33250324

RESUMO

In acid soils, manganese (Mn) concentration increases, becoming toxic to plants. Mn toxicity differentially affects physiological processes in highbush blueberry (Vaccinium corymbosum L.) cultivars. However, the mechanisms involved in Mn toxicity of the new and traditionally established cultivars are unknown. To understand Mn toxicity mechanisms, four traditionally established (Legacy, Brigitta, Duke, and Star) cultivars and two recently introduced to Chile (Camellia and Cargo) were grown under hydroponic conditions subjected to control Mn (2 µM) and Mn toxicity (1000 µM). Physiological, biochemical, and molecular parameters were evaluated at 0, 7, 14, and 21 days. We found that the relative growth rate was reduced in almost all blueberry cultivars under Mn toxicity, except Camellia, with Star being the most affected. The photosynthetic parameters were reduced only in Star by Mn treatment. Leaf Mn concentrations increased in all cultivars, exhibiting the lowest levels in Camellia and Cargo. Brigitta and Duke exhibited higher ß-carotene levels, while Cargo exhibited a reduction under toxic Mn. In Legacy, lutein levels increased under Mn toxicity. Traditionally established cultivars exhibited higher antioxidant activity than the new cultivars under Mn toxicity. The Legacy and Duke cultivars increased VcMTP4 expression with Mn exposure time. A multivariate analysis separated Legacy and Duke from Camellia; Star and Cargo; and Brigitta. Our study demonstrated that Mn toxicity differentially affects physiological, biochemical, and molecular features in the new and traditionally established cultivars, with Legacy, Duke, Camellia, and Cargo as the Mn-resistant cultivars differing in their Mn-resistance mechanisms and Star as the Mn-sensitive cultivar.


Assuntos
Mirtilos Azuis (Planta)/efeitos dos fármacos , Manganês/toxicidade , Mirtilos Azuis (Planta)/classificação , Mirtilos Azuis (Planta)/fisiologia , Chile , Regulação da Expressão Gênica de Plantas , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...