Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 329: 113318, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32305419

RESUMO

Early life stress (ELS) is a risk factor for many psychopathologies that happen later in life. Although stress can occur in cases of child abuse, studies on non-accidental brain injuries in pediatric populations do not consider the possible increase in vulnerability caused by ELS. Hence, we sought to determine whether ELS increases the effects of pediatric mild traumatic brain injury (mTBI) on cognition, hippocampal inflammation, and plasticity. Male rats were subjected to maternal separation for 180 min per day (MS180) or used as controls (CONT) during the first 21 post-natal (P) days. At P21 the rats were anesthetized with isoflurane and subjected to a mild controlled cortical impact or sham injury. At P32 the rats were injected with the cell proliferation marker bromodeoxyuridine (BrdU, 500 mg/kg), then evaluated for spatial learning and memory in a water maze (P35-40) and sacrificed for quantification of Ki67+, BrdU+ and Iba1+ (P42). Neither MS180 nor mTBI impacted cognitive outcome when provided alone but their combination (MS180 + mTBI) decreased spatial learning and memory relative to Sham controls (p < .01). mTBI increased microglial activation and affected BrdU+ cell survival in the ipsilateral hippocampus without affecting proliferation rates. However, only MS180 + mTBI increased microglial activation in the area adjacent to the injury and the contralateral CA1 hippocampal subfield, and decreased cell proliferation in the ipsilateral neurogenic niche. Overall, the data show that ELS increases the vulnerability to the sequelae of pediatric mTBI and may be mediated by increased neuroinflammation.


Assuntos
Concussão Encefálica/patologia , Concussão Encefálica/psicologia , Privação Materna , Aprendizagem Espacial/fisiologia , Animais , Animais Recém-Nascidos , Concussão Encefálica/etiologia , Suscetibilidade a Doenças/etiologia , Suscetibilidade a Doenças/patologia , Suscetibilidade a Doenças/psicologia , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
2.
J Neurotrauma ; 36(5): 756-767, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30051757

RESUMO

Environmental enrichment (EE) confers motor and cognitive recovery in pre-clinical models of traumatic brain injury (TBI), and neurogenesis has been attributed to mediating the benefits. Whether that ascription is correct has not been fully investigated. Hence, the goal of the current study is to further clarify the possible role of learning-induced hippocampal neurogenesis on functional recovery after cortical impact or sham injury by utilizing two EE paradigms (i.e., early + continuous, initiated immediately after TBI and presented 24 h/day; and delayed + abbreviated, initiated 4 days after TBI for 6 h/day) and comparing them to one another as well as to standard (STD) housed controls. Motor and cognitive performance was assessed on post-operative Days 1-5 and 14-19, respectively, for the STD and early + continuous EE groups and on Days 4-8 and 17-22, for the delayed + abbreviated EE groups. Rats were injected with bromodeoxyuridine (BrdU, 500 mg/ kg; intraperitoneally) for 3 days (12 h apart) before cognitive training and sacrificed 1 week later for quantification of BrdU+ and doublecortin (DCX+) labeled cells. Both early + continuous and delayed + abbreviated EE promoted motor and cognitive recovery after TBI, relative to STD (p < 0.05), and did not differ from one another (p > 0.05). However, only early + continuous EE increased DCX+ cells beyond the level of STD-housed controls (p < 0.05). No effect of EE on non-injured controls was observed. Based on these data, two novel conclusions emerged. First, EE does not need to be provided early and continuously after TBI to confer benefits, which lends credence to the delayed + abbreviated EE paradigm as a relevant pre-clinical model of neurorehabilitation. Second, the functional recovery observed after TBI in the delayed + abbreviated EE paradigm is not contingent on increased hippocampal neurogenesis. Future studies will elucidate alternate viable mechanisms mediating the benefits induced by EE.


Assuntos
Lesões Encefálicas Traumáticas/reabilitação , Abrigo para Animais , Neurogênese , Recuperação de Função Fisiológica , Meio Social , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Proteína Duplacortina , Hipocampo/fisiopatologia , Masculino , Reabilitação Neurológica/métodos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...