Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(19)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37830616

RESUMO

Previous studies have revealed that norrin can reverse vascular endothelial-growth-factor (VEGF)-induced permeability in a ß-catenin-dependent pathway. Here, we have explored the contribution of disheveled-1 (DVL1) in norrin-induced blood-retinal barrier (BRB) restoration. We provide evidence that in addition to canonical signaling, DVL1 promotes tight junction (TJ) stabilization through a novel, non-canonical signaling pathway involving direct claudin-5 (CLDN5) binding. Immunofluorescence staining of rat retinal cross-sections showed enriched expression of DVL1 and 3 at endothelial capillaries and co-localization with CLDN5 and ZO-1 at the TJ complex in primary bovine retinal endothelial cells (BRECs). Barrier properties of BRECs were determined via measurements of trans-endothelial electrical resistance (TEER) or permeability to 70 kDa RITC-dextran. These studies demonstrated that norrin restoration of barrier properties after VEGF treatment required DVL1 as an siRNA knockdown of Dvl1 but not Dvl2 or Dvl3, reduced basal barrier properties and ablated norrin-induced barrier restoration. However, loss of Dvl1 did not decrease ß-catenin signaling activity as measured by Axin2 mRNA expression, suggesting the contribution of a non-canonical pathway. DVL and TJ protein interactions were analyzed via co-immunoprecipitation of endogenous protein in BRECs, which demonstrated that DVL1 interacts with both CLDN5 and ZO-1, while DVL3 interacts only with ZO-1. These interactions were most abundant after inducing BRB restoration by treating BRECs with VEGF and norrin. DVL has previously been shown to form intramolecular bindings between the C-terminal PDZ-binding motif (PDZ-BM) with an internal PDZ domain. Co-transfection of HEK293 cells with DVL1 and CLDN5 or relevant mutants revealed that DVL1 interacts with CLDN5 through the DVL PDZ domain binding, CLDN5 PDZ-BM, in competition with DVL1 PDZ-BM, since DVL/CLDN5 interaction increases with deletion of the DVL1 PDZ-BM and decreases by co-expressing the C-terminal fragment of DVL1 containing the PDZ-BM or through deletion of CLDN5 PDZ-BM. In BREC cells, transfection of the C-terminal fragment of DVL1 downregulates the expression of CLDN5 but does not affect the expression of other proteins of the TJs, including ZO-1, occludin, CLDN1 or VE-cadherin. Blocking DVL1/CLDN5 interaction increased basal permeability and prevented norrin induction of barrier properties after VEGF. Combined with previous data, these results demonstrate that norrin signals through both a canonical ß-catenin pathway and a non-canonical signaling pathway by which DVL1 directly binds to CLDN5 to promote barrier properties.


Assuntos
Células Endoteliais , beta Catenina , Ratos , Humanos , Animais , Bovinos , beta Catenina/metabolismo , Claudina-5/genética , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células HEK293
2.
Exp Eye Res ; 217: 108977, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35139333

RESUMO

Loss-of-function mutations in the Wnt co-receptor, low-density lipoprotein receptor-related protein 5 (LRP5), result in familial exudative vitreoretinopathy (FEVR), osteoporosis-pseudoglioma syndrome (OPPG), and Norrie disease. CRISPR/Cas9 gene editing was used to produce rat strains deficient in Lrp5. The purpose of this study was to validate this rat model for studies of hypovascular, exudative retinopathies. The retinal vasculature of wildtype and Lrp5 knockout rats was stained with Giffonia simplifolia isolectin B4 and imaged by fluorescence microscopy. Effects on retinal structure were investigated by histology. The integrity of the blood-retina barrier was analyzed by measurement of permeability to Evans blue dye and staining for claudin-5. Retinas were imaged by fundus photography and SD-OCT, and electroretinograms were recorded. Lrp5 gene deletion led to sparse superficial retinal capillaries and loss of the deep and intermediate plexuses. Autofluorescent exudates were observed and are correlated with increased Evans blue permeability and absence of claudin-5 expression in superficial vessels. OCT images show pathology similar to OCT of humans with FEVR, and retinal thickness is reduced by 50% compared to wild-type rats. Histology and OCT reveal that photoreceptor and outer plexiform layers are absent. The retina failed to demonstrate an ERG response. CRISPR/Cas9 gene-editing produced a predictable rat Lrp5 knockout model with extensive defects in the retinal vascular and neural structure and function. This rat model should be useful for studies of exudative retinal vascular diseases involving the Wnt and norrin pathways.


Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Retina , Animais , Claudina-5/biossíntese , Claudina-5/genética , Azul Evans/farmacologia , Vitreorretinopatias Exsudativas Familiares/genética , Vitreorretinopatias Exsudativas Familiares/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Mutação , Ratos , Retina/metabolismo , Relação Estrutura-Atividade
3.
J Biol Chem ; 295(14): 4647-4660, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32086377

RESUMO

Vascular endothelial growth factor (VEGF) contributes to blood-retinal barrier (BRB) dysfunction in several blinding eye diseases, including diabetic retinopathy. Signaling via the secreted protein norrin through the frizzled class receptor 4 (FZD4)/LDL receptor-related protein 5-6 (LRP5-6)/tetraspanin 12 (TSPAN12) receptor complex is required for developmental vascularization and BRB formation. Here, we tested the hypothesis that norrin restores BRB properties after VEGF-induced vascular permeability in diabetic rats or in animals intravitreally injected with cytokines. Intravitreal co-injection of norrin with VEGF completely ablated VEGF-induced BRB permeability to Evans Blue-albumin. Likewise, 5-month diabetic rats exhibited increased permeability of FITC-albumin, and a single norrin injection restored BRB properties. These results were corroborated in vitro, where co-stimulation of norrin with VEGF or stimulation of norrin after VEGF exposure restored barrier properties, indicated by electrical resistance or 70-kDa RITC-dextran permeability in primary endothelial cell culture. Interestingly, VEGF promoted norrin signaling by increasing the FZD4 co-receptor TSPAN12 at cell membranes in an MAPK/ERK kinase (MEK)/ERK-dependent manner. Norrin signaling through ß-catenin was required for BRB restoration, but glycogen synthase kinase 3 α/ß (GSK-3α/ß) inhibition did not restore BRB properties. Moreover, levels of the tight junction protein claudin-5 were increased with norrin and VEGF or with VEGF alone, but both norrin and VEGF were required for enriched claudin-5 localization at the tight junction. These results suggest that VEGF simultaneously induces vascular permeability and promotes responsiveness to norrin. Norrin, in turn, restores tight junction complex organization and BRB properties in a ß-catenin-dependent manner.


Assuntos
Barreira Hematorretiniana/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Proteínas do Olho/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Barreira Hematorretiniana/efeitos dos fármacos , Bovinos , Claudina-5/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Ratos , Ratos Long-Evans , Retina/metabolismo , Vasos Retinianos/citologia , Vasos Retinianos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tetraspaninas/genética , Tetraspaninas/metabolismo , Regulação para Cima/efeitos dos fármacos , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo
4.
Int J Mol Sci ; 20(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783547

RESUMO

Tight junction (TJ) proteins form a continuous intercellular network creating a barrier with selective regulation of water, ion, and solutes across endothelial, epithelial, and glial tissues. TJ proteins include the claudin family that confers barrier properties, members of the MARVEL family that contribute to barrier regulation, and JAM molecules, which regulate junction organization and diapedesis. In addition, the membrane-associated proteins such as MAGUK family members, i.e., zonula occludens, form the scaffold linking the transmembrane proteins to both cell signaling molecules and the cytoskeleton. Most studies of TJ have focused on the contribution to cell-cell adhesion and tissue barrier properties. However, recent studies reveal that, similar to adherens junction proteins, TJ proteins contribute to the control of cell proliferation. In this review, we will summarize and discuss the specific role of TJ proteins in the control of epithelial and endothelial cell proliferation. In some cases, the TJ proteins act as a reservoir of critical cell cycle modulators, by binding and regulating their nuclear access, while in other cases, junctional proteins are located at cellular organelles, regulating transcription and proliferation. Collectively, these studies reveal that TJ proteins contribute to the control of cell proliferation and differentiation required for forming and maintaining a tissue barrier.


Assuntos
Proliferação de Células/fisiologia , Junções Íntimas/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-31920979

RESUMO

In the present study, we determined the cellular regulators of ERK1/2 and Akt signaling pathways in response to human CRF1 receptor (CRF1R) activation in transfected COS-7 cells. We found that Pertussis Toxin (PTX) treatment or sequestering Gßγ reduced CRF1R-mediated activation of ERK1/2, suggesting the involvement of a Gi-linked cascade. Neither Gs/PKA nor Gq/PKC were associated with ERK1/2 activation. Besides, CRF induced EGF receptor (EGFR) phosphorylation at Tyr1068, and selective inhibition of EGFR kinase activity by AG1478 strongly inhibited the CRF1R-mediated phosphorylation of ERK1/2, indicating the participation of EGFR transactivation. Furthermore, CRF-induced ERK1/2 phosphorylation was not altered by pretreatment with batimastat, GM6001, or an HB-EGF antibody indicating that metalloproteinase processing of HB-EGF ligands is not required for the CRF-mediated EGFR transactivation. We also observed that CRF induced Src and PYK2 phosphorylation in a Gßγ-dependent manner. Additionally, using the specific Src kinase inhibitor PP2 and the dominant-negative-SrcYF-KM, it was revealed that CRF-stimulated ERK1/2 phosphorylation depends on Src activation. PP2 also blocked the effect of CRF on Src and EGFR (Tyr845) phosphorylation, further demonstrating the centrality of Src. We identified the formation of a protein complex consisting of CRF1R, Src, and EGFR facilitates EGFR transactivation and CRF1R-mediated signaling. CRF stimulated Akt phosphorylation, which was dependent on Gi/ßγ subunits, and Src activation, however, was only slightly dependent on EGFR transactivation. Moreover, PI3K inhibitors were able to inhibit not only the CRF-induced phosphorylation of Akt, as expected, but also ERK1/2 activation by CRF suggesting a PI3K dependency in the CRF1R ERK signaling. Finally, CRF-stimulated ERK1/2 activation was similar in the wild-type CRF1R and the phosphorylation-deficient CRF1R-Δ386 mutant, which has impaired agonist-dependent ß-arrestin-2 recruitment; however, this situation may have resulted from the low ß-arrestin expression in the COS-7 cells. When ß-arrestin-2 was overexpressed in COS-7 cells, CRF-stimulated ERK1/2 phosphorylation was markedly upregulated. These findings indicate that on the base of a constitutive CRF1R/EGFR interaction, the Gi/ßγ subunits upstream activation of Src, PYK2, PI3K, and transactivation of the EGFR are required for CRF1R signaling via the ERK1/2-MAP kinase pathway. In contrast, Akt activation via CRF1R is mediated by the Src/PI3K pathway with little contribution of EGFR transactivation.

7.
Vision Res ; 139: 123-137, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28619516

RESUMO

The blood-retinal barrier (BRB) regulates transport across retinal capillaries maintaining proper neural homeostasis and protecting the neural tissue from potential blood borne toxicity. Loss of the BRB contributes to the pathophysiology of a number of blinding retinal diseases including diabetic retinopathy. In this review, we address the basis of the BRB, including the molecular mechanisms that regulate flux across the retinal vascular bed. The routes of transcellular and paracellular flux are described as well as alterations in these pathways in response to permeabilizing agents in diabetes. Finally, we provide information on exciting new studies that help to elucidate the process of BRB development or barriergenesis and how understanding this process may lead to new opportunities for barrier restoration in diabetic retinopathy.


Assuntos
Barreira Hematorretiniana/fisiologia , Retinopatia Diabética/fisiopatologia , Animais , Permeabilidade Capilar/fisiologia , Humanos , Vasos Retinianos/fisiologia
8.
Am J Pathol ; 186(9): 2486-99, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27423695

RESUMO

Occludin is a transmembrane tight junction protein that contributes to diverse cellular functions, including control of barrier properties, cell migration, and proliferation. Vascular endothelial growth factor (VEGF) induces phosphorylation of occludin at S490, which is required for VEGF-induced endothelial permeability. Herein, we demonstrate that occludin S490 phosphorylation also regulates VEGF-induced retinal endothelial cell proliferation and neovascularization. Using a specific antibody, phospho-occludin was located in centrosomes in endothelial cell cultures, animal models, and human surgical samples of retinal neovessels. Occludin S490 phosphorylation was found to increase with endothelial tube formation in vitro and in vivo during retinal neovascularization after induction of VEGF expression. More important, expression of occludin mutated at S490 to Ala, completely inhibited angiogenesis in cell culture models and in vivo. Collectively, these data suggest a novel role for occludin in regulation of endothelial proliferation and angiogenesis in a phosphorylation-dependent manner. These findings may lead to methods of regulating pathological neovascularization by specifically targeting endothelial cell proliferation.


Assuntos
Ocludina/metabolismo , Neovascularização Retiniana/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Barreira Hematorretiniana/metabolismo , Western Blotting , Bovinos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Fosforilação
9.
PLoS One ; 8(4): e60655, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637756

RESUMO

Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB) was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs) cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM) from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1ß, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.


Assuntos
Barreira Hematoencefálica/citologia , Glioma/patologia , Células-Tronco Neurais/citologia , Migração Transendotelial e Transepitelial , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Toxina da Cólera/farmacologia , Claudinas/metabolismo , Meios de Cultivo Condicionados/metabolismo , Dinoprostona/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Haptoglobinas , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Imunoglobulinas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Ocludina/metabolismo , Precursores de Proteínas , Ratos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
10.
Antioxid Redox Signal ; 15(5): 1235-53, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21294657

RESUMO

SIGNIFICANCE: ZO-1, ZO-2, and ZO-3 are scaffold proteins of the tight junction (TJ) that belong to the MAGUK protein family characterized for exhibiting PDZ, SH3, and GuK domains. ZO proteins are present only in multicellular organisms, being the placozoa the first to have them. ZO proteins associate among themselves and with other integral and adaptor proteins of the TJ, of the ZA and of gap junctions, as with numerous signaling proteins and the actin cytoskeleton. ZO proteins are also present at the nucleus of proliferating cells. RECENT ADVANCES: Oxidative stress disassembles the TJs of endothelial and epithelial cells. CRITICAL ISSUES: Oxidative stress alters ZO proteins expression and localization, in conditions like hypoxia, bacterial and viral infections, vitamin deficiencies, age-related diseases, diabetes and inflammation, alcohol and tobacco consumption. FUTURE DIRECTIONS: Molecules present in the signaling pathways triggered by oxidative stress can be targets for therapeutic intervention.


Assuntos
Proteínas de Membrana/metabolismo , Junções Íntimas/metabolismo , Animais , Hipóxia Celular , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Oxirredução , Estresse Oxidativo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico , Transdução de Sinais , Junções Íntimas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...