Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 49: 109374, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520656

RESUMO

The Yucatan coastal zone is an area that contributes to many anthropogenic activities resulting in substantial contamination (metals, pesticides) in aquatic organisms. The dolphin is an excellent sentinel animal used in studying contamination in this area. Some substances found in dolphins have been identified as toxic causing alterations in the properties of membranes and produce lipid peroxidation especially heavy metals. The dataset presented here is associated with the research article paper entitled "Trace element and lipidomic analysis of bottlenose dolphin blubber from the Yucatan coast: Lipid composition relationships". In this article, we presented the trace element concentrations found in blubber and their comparison with other studies performed in mammal marine organisms. Lipidomic characterization of bottlenose dolphin blubber and their association with trace elements and the differences related to biological characteristics were presented. This data provides a correlation analysis between trace element concentrations, lipid species and body length and the lipid differences related to biological characteristics such as growth stage, stranding code, and the presence of stomach contents. We used Spearman correlation analysis to identify the association with body length, trace elements and lipids. Wilcoxon rank-sum test was used to determine differences in lipids related to stranding code (3: moderate decomposition, 4: advanced decomposition), growth stage (juveniles and adults) and whether they showed presence of stomach contents or not. The data indicates that Cr, Cd and Zn concentrations were higher compared to concentrations found in blubbler of T. truncatus from other studies (See Table 3). Cr, Co, As and Cd were found in higher concentration in larger organisms compared to smaller ones. The results of correlation between lipids and body length showed a decrease in some ceramides (CER, DCER, HCER), sterols (CE), glycerolipids (TAG, DAG) and phosphatidylethanolamines (LPE, PE) in larger dolphins (Table 4). Dolphins with advanced decomposition (code 4) showed lower concentrations of phosphatidylethanolamines (PE) compared with organisms with moderate decomposition (code 3). Organisms with empty stomachs showed higher concentrations of phosphoethanolamines suggesting a preferential metabolism of energy-rich lipids over structural lipids. The information in these datasets may contribute to understanding the potential associations of trace elements, lipids and their associations with biological characteristics.

2.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677663

RESUMO

Invasive fungal infections represent a global health threat. They are associated with high mortality and morbidity rates, partly due to the ineffectiveness of the available antifungal agents. The rampant increase in infections recalcitrant to the current antifungals has worsened this scenario and made the discovery of new and more effective antifungals a pressing health issue. In this study, 65 extracts from marine organisms of the Yucatan Peninsula, Mexico, were screened for antifungal activity against Candida albicans and Candida glabrata, two of the most prevalent fungal species that cause nosocomial invasive fungal infections worldwide. A total of 51 sponges, 13 ascidians and 1 gorgonian were collected from the coral reef and mangrove forest in the Yucatan Peninsula (Mexico) and extracted with organic solvents. Nine crude extracts showed potent antifungal activity, of which four extracts from the sponge species Aiolochroia crassa, Amphimedon compressa, Monanchora arbuscula and Agelas citrina had promising activity against Candida spp. Bioassay-guided fractionation of the M. arbuscula extract revealed the remarkable fungicidal activity of some fractions. Analysis of the chemical composition of one of the most active fractions by UHPLC-HRMS and NMR indicated the presence of mirabilin B and penaresidin B, and their contribution to the observed antifungal activity is discussed. Overall, this work highlights marine organisms of the Yucatan Peninsula as important reservoirs of natural products with promising fungicidal activity, which may greatly advance the treatment of invasive fungal infections, especially those afflicting immunosuppressed patients.


Assuntos
Antifúngicos , Infecções Fúngicas Invasivas , Antifúngicos/química , Candida , México , Organismos Aquáticos , Testes de Sensibilidade Microbiana , Infecções Fúngicas Invasivas/tratamento farmacológico
3.
Chemosphere ; 299: 134353, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35314180

RESUMO

Bottlenose dolphins (Tursiops truncatus) are found in coastal and estuarine ecosystems where they are in continuous contact with multiple abiotic and biotic stressors in the environment. Due to their role as predators, they can bioaccumulate contaminants and are considered sentinel organisms for monitoring the health of coastal marine ecosystems. The northern zonal coast of the Yucatan peninsula of Mexico has a high incidence of anthropogenic activities. The principal objectives of this study were two-fold: 1) to determine the presence of trace metals and their correlation with lipids in bottlenose dolphin blubber, and 2) to use a lipidomics approach to characterize their biological responses. Levels of trace elements (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Pb) were analyzed using ICP-MS and lipids were measured using a targeted lipidomics approach with LC-MS/MS. Spearman correlation analysis was used to identify associations between lipids and trace elements. The influences of gender, stranding codes, presence of stomach content, growth stages and body length were also analyzed. Blubber lipid composition was dominated by triacylglycerols (TAG). Our results demonstrated the presence of heavy-metal elements such as Cd and As, which were correlated with different lipid species, mainly the ceramides and glycerophospholipids, respectively. Organisms with Cd showed lower concentrations of ceramides (CER, HCER and DCER), TAG and cholesteryl esters (CE). Trace elements Cr, Co, As and Cd increased proportionately with body length. This study provides a novel insight of lipidomic characterization and correlations with trace elements in the bottlenose dolphin which might contribute to having a better understanding of the physiological functions and the risks that anthropogenic activities can bring to sentinel organisms from coastal regions.


Assuntos
Golfinho Nariz-de-Garrafa , Oligoelementos , Poluentes Químicos da Água , Animais , Cádmio/análise , Ceramidas , Cromatografia Líquida , Ecossistema , Monitoramento Ambiental , Lipidômica , Lipídeos , México , Espectrometria de Massas em Tandem , Oligoelementos/análise , Poluentes Químicos da Água/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-30771562

RESUMO

The common bottlenose dolphin (Tursiops truncatus) is a carnivorous cetacean that thrives in marine environments, one of the apex predators of the marine food web. They are found in coastal and estuarine ecosystems, which are known to be sensitive to environmental impacts. Dolphins are considered sentinel organisms for monitoring the health of coastal marine ecosystems due to their role as predators that can bioaccumulate contaminants. Although recent studies have focused on capturing the circulating metabolomes of these mammals, and in the context of pollutants and exposures in the marine environment, skin and blubber are important surface and protective tissues that have not been adequately probed for metabolism. Using a proton nuclear magnetic resonance spectroscopy (1H NMR) based metabolomics approach, we quantified 51 metabolites belonging to 74 different metabolic pathways in the skin and blubber of stranded bottlenose dolphin (n = 4) samples collected at different localities in the Southern Zone coast of Yucatan Peninsula of Mexico. Results indicate that metabolism of skin and blubber are quantitatively very different. These metabolite abundances could help discriminate the tissue-types using supervised partial least square regression discriminant analysis (PLSDA). Further, using hierarchical clustering analysis and random forest analysis of the metabolite abundances, the results pointed to unique metabolites that are important classifiers of the tissue-type. On one hand, the differential metabolic patterns, mainly linking fatty acid metabolism and ketogenic amino acids, seem to constitute a characteristic of blubber, thus pointing to fat synthesis and deposition. On the other hand, the skin showed several metabolites involved in gluconeogenic pathways, pointing towards an active anabolic energy-generating metabolism. The most notable pathways found in both tissues included: urea cycle, nucleotide metabolism, amino acid metabolism, glutathione metabolism among others. Our 1H NMR metabolomics analysis allowed the quantification of metabolites associated with these two organs, i.e., pyruvic acid, arginine, ornithine, 2-hydroxybutyric acid, 3-hydroxyisobutyric acid, and acetic acid, as discriminatory and classifying metabolites. These results would lead to further understanding of the functional and physiological roles of dolphin skin and blubber metabolism for better efforts in their conservation, as well as useful target biopsy tissues for monitoring of dolphin health conditions in marine pollution and ecotoxicology studies.


Assuntos
Golfinho Nariz-de-Garrafa/metabolismo , Redes e Vias Metabólicas , Pele/metabolismo , Animais , Feminino , Gluconeogênese , Metabolismo dos Lipídeos , Masculino , Metaboloma , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...