Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 9(32): 18292-18301, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35515255

RESUMO

A series of Mo-based catalysts were synthesized by tuning the sulfidation temperature to produce mixtures of MoO3 and MoS2 as active phases for the hydrodeoxygenation (HDO) of palmitic acid. Differences in the oxidation states of Mo, and the chemical species present in the catalytic materials were determined by spectroscopic techniques. Palmitic acid was used as a fatty-acid model compound to test the performance of these catalysts. The catalytic performance was related to different chemical species formed within the materials. Sulfidation of these otherwise inactive catalysts significantly increased their performance. The catalytic activity remains optimal between the sulfidation temperatures of 100 °C and 200 °C, whereas the most active catalyst was obtained at 200 °C. The catalytic performance decreased significantly at 400 °C due to a higher proportion of sulfides formed in the materials. Furthermore, the relative proportion of MoO3 to MoS2 is essential to form highly active materials to produce O-free hydrocarbons from biomass feedstock. The transition from MoS2 to MoO3 reveals the importance of Mo-S and Mo-O catalytically active species needed for the HDO process and hence for biomass transformation. We conclude that transitioning from MoS2 to MoO3 catalysts is a step in the right direction to produce green fuels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...