Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Phenomics ; 6: 0202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939746

RESUMO

Grape cluster architecture and compactness are complex traits influencing disease susceptibility, fruit quality, and yield. Evaluation methods for these traits include visual scoring, manual methodologies, and computer vision, with the latter being the most scalable approach. Most of the existing computer vision approaches for processing cluster images often rely on conventional segmentation or machine learning with extensive training and limited generalization. The Segment Anything Model (SAM), a novel foundation model trained on a massive image dataset, enables automated object segmentation without additional training. This study demonstrates out-of-the-box SAM's high accuracy in identifying individual berries in 2-dimensional (2D) cluster images. Using this model, we managed to segment approximately 3,500 cluster images, generating over 150,000 berry masks, each linked with spatial coordinates within their clusters. The correlation between human-identified berries and SAM predictions was very strong (Pearson's r2 = 0.96). Although the visible berry count in images typically underestimates the actual cluster berry count due to visibility issues, we demonstrated that this discrepancy could be adjusted using a linear regression model (adjusted R 2 = 0.87). We emphasized the critical importance of the angle at which the cluster is imaged, noting its substantial effect on berry counts and architecture. We proposed different approaches in which berry location information facilitated the calculation of complex features related to cluster architecture and compactness. Finally, we discussed SAM's potential integration into currently available pipelines for image generation and processing in vineyard conditions.

2.
Hortic Res ; 10(11): uhad202, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023484

RESUMO

Domestication of cranberry and blueberry began in the United States in the early 1800s and 1900s, respectively, and in part owing to their flavors and health-promoting benefits are now cultivated and consumed worldwide. The industry continues to face a wide variety of production challenges (e.g. disease pressures), as well as a demand for higher-yielding cultivars with improved fruit quality characteristics. Unfortunately, molecular tools to help guide breeding efforts for these species have been relatively limited compared with those for other high-value crops. Here, we describe the construction and analysis of the first pangenome for both blueberry and cranberry. Our analysis of these pangenomes revealed both crops exhibit great genetic diversity, including the presence-absence variation of 48.4% genes in highbush blueberry and 47.0% genes in cranberry. Auxiliary genes, those not shared by all cultivars, are significantly enriched with molecular functions associated with disease resistance and the biosynthesis of specialized metabolites, including compounds previously associated with improving fruit quality traits. The discovery of thousands of genes, not present in the previous reference genomes for blueberry and cranberry, will serve as the basis of future research and as potential targets for future breeding efforts. The pangenome, as a multiple-sequence alignment, as well as individual annotated genomes, are publicly available for analysis on the Genome Database for Vaccinium-a curated and integrated web-based relational database. Lastly, the core-gene predictions from the pangenomes will serve useful to develop a community genotyping platform to guide future molecular breeding efforts across the family.

3.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577683

RESUMO

Domestication of cranberry and blueberry began in the United States in the early 1800s and 1900s, respectively, and in part owing to their flavors and health-promoting benefits are now cultivated and consumed worldwide. The industry continues to face a wide variety of production challenges (e.g. disease pressures) as well as a demand for higher-yielding cultivars with improved fruit quality characteristics. Unfortunately, molecular tools to help guide breeding efforts for these species have been relatively limited compared with those for other high-value crops. Here, we describe the construction and analysis of the first pangenome for both blueberry and cranberry. Our analysis of these pangenomes revealed both crops exhibit great genetic diversity, including the presence-absence variation of 48.4% genes in highbush blueberry and 47.0% genes in cranberry. Auxiliary genes, those not shared by all cultivars, are significantly enriched with molecular functions associated with disease resistance and the biosynthesis of specialized metabolites, including compounds previously associated with improving fruit quality traits. The discovery of thousands of genes, not present in the previous reference genomes for blueberry and cranberry, will serve as the basis of future research and as potential targets for future breeding efforts. The pangenome, as a multiple-sequence alignment, as well as individual annotated genomes, are publicly available for analysis on the Genome Database for Vaccinium - a curated and integrated web-based relational database. Lastly, the core-gene predictions from the pangenomes will serve useful to develop a community genotyping platform to guide future molecular breeding efforts across the family.

4.
Front Plant Sci ; 14: 1177406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255566

RESUMO

Sainfoin (Onobrychis spp.) is a perennial forage legume that is also attracting attention as a perennial pulse with potential for human consumption. The dual use of sainfoin underpins diverse research and breeding programs focused on improving sainfoin lines for forage and pulses, which is driving the generation of complex datasets describing high dimensional phenotypes in the post-omics era. To ensure that multiple user groups, for example, breeders selecting for forage and those selecting for edible seed, can utilize these rich datasets, it is necessary to develop common ontologies and accessible ontology platforms. One such platform, Crop Ontology, was created in 2008 by the Consortium of International Agricultural Research Centers (CGIAR) to host crop-specific trait ontologies that support standardized plant breeding databases. In the present study, we describe the sainfoin crop ontology (CO). An in-depth literature review was performed to develop a comprehensive list of traits measured and reported in sainfoin. Because the same traits can be measured in different ways, ultimately, a set of 98 variables (variable = plant trait + method of measurement + scale of measurement) used to describe variation in sainfoin were identified. Variables were formatted and standardized based on guidelines provided here for inclusion in the sainfoin CO. The 98 variables contained a total of 82 traits from four trait classes of which 24 were agronomic, 31 were morphological, 19 were seed and forage quality related, and 8 were phenological. In addition to the developed variables, we have provided a roadmap for developing and submission of new traits to the sainfoin CO.

5.
Front Genet ; 14: 1101401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255716

RESUMO

Chili pepper (Capsicum annuum L.) is one of the oldest and most phenotypically diverse pre-Columbian crops of the Americas. Despite the abundance of genetic resources, the use of wild germplasm and landraces in chili pepper breeding is limited. A better understanding of the evolutionary history in chili peppers, particularly in the context of traits of agronomic interest, can contribute to future improvement and conservation of genetic resources. In this study, an F2:3 mapping population derived from a cross between a C. annuum wild accession (Chiltepin) and a cultivated variety (Puya) was used to identify genomic regions associated with 19 domestication and agronomic traits. A genetic map was constructed consisting of 1023 single nucleotide polymorphism (SNP) markers clustered into 12 linkage groups and spanning a total of 1,263.87 cM. A reciprocal translocation that differentiates the domesticated genome from its wild ancestor and other related species was identified between chromosomes 1 and 8. Quantitative trait locus (QTL) analysis detected 20 marker-trait associations for 13 phenotypes, from which 14 corresponded to previously identified loci, and six were novel genomic regions related to previously unexplored domestication-syndrome traits, including form of unripe fruit, seedlessness, deciduous fruit, and growth habit. Our results revealed that the genetic architecture of Capsicum domestication is similar to other domesticated species with few loci with large effects, the presence of QTLs clusters in different genomic regions, and the predominance of domesticated recessive alleles. Our analysis indicates the domestication process in chili pepper has also had an effect on traits not directly related to the domestication syndrome. The information obtained in this study provides a more complete understanding of the genetic basis of Capsicum domestication that can potentially guide strategies for the exploitation of wild alleles.

6.
Euro Surveill ; 27(27)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35801519

RESUMO

Up to 22 June 2022, 508 confirmed cases of monkeypox (MPX) have been reported in the Madrid region of Spain, 99% are men (n = 503) with a median age of 35 years (range: 18-67). In this ongoing outbreak, 427 cases (84.1%) reported condomless sex or sex with multiple partners within the 21 days before onset of symptoms, who were predominantly men who have sex with men (MSM) (n = 397; 93%). Both the location of the rash, mainly in the anogenital and perineal area, as well as the presence of inguinal lymphadenopathy suggest that close physical contact during sexual activity played a key role in transmission. Several cases reported being at a sauna in the city of Madrid (n = 34) or a mass event held on the Spanish island of Gran Canaria (n = 27), activities which may represent a conducive environment for MPX virus spread, with many private parties also playing an important role. Because of the rapid implementation of MPX surveillance in Madrid, one of the largest outbreaks reported outside Africa was identified. To minimise transmission, we continue to actively work with LGBTIQ+ groups and associations, with the aim of raising awareness among people at risk and encouraging them to adopt preventive measures.


Assuntos
Mpox , Minorias Sexuais e de Gênero , Adolescente , Adulto , Idoso , Surtos de Doenças , Feminino , Homossexualidade Masculina , Humanos , Masculino , Pessoa de Meia-Idade , Mpox/diagnóstico , Comportamento Sexual , Espanha/epidemiologia , Adulto Jovem
7.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100386

RESUMO

Generations of farmer selection in the central Mexican highlands have produced unique maize varieties adapted to the challenges of the local environment. In addition to possessing great agronomic and cultural value, Mexican highland maize represents a good system for the study of local adaptation and acquisition of adaptive phenotypes under cultivation. In this study, we characterize a recombinant inbred line population derived from the B73 reference line and the Mexican highland maize variety Palomero Toluqueño. B73 and Palomero Toluqueño showed classic rank-changing differences in performance between lowland and highland field sites, indicative of local adaptation. Quantitative trait mapping identified genomic regions linked to effects on yield components that were conditionally expressed depending on the environment. For the principal genomic regions associated with ear weight and total kernel number, the Palomero Toluqueño allele conferred an advantage specifically in the highland site, consistent with local adaptation. We identified Palomero Toluqueño alleles associated with expression of characteristic highland traits, including reduced tassel branching, increased sheath pigmentation and the presence of sheath macrohairs. The oligogenic architecture of these three morphological traits supports their role in adaptation, suggesting they have arisen from consistent directional selection acting at distinct points across the genome. We discuss these results in the context of the origin of phenotypic novelty during selection, commenting on the role of de novo mutation and the acquisition of adaptive variation by gene flow from endemic wild relatives.


Assuntos
Adaptação Fisiológica , Zea mays , Aclimatação , Adaptação Fisiológica/genética , Genômica , Fenótipo , Zea mays/genética , Zea mays/metabolismo
8.
Curr Opin Plant Biol ; 65: 102150, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34883308

RESUMO

De novo domestication is an exciting option for increasing species diversity and ecosystem service functionality of agricultural landscapes. Genomic selection (GS), the application of genomic markers to predict phenotypic traits in a breeding population, offers the possibility of rapid genetic improvement, making GS especially attractive for modifying traits of long-lived species. However, for some wild species just entering the domestication pipeline, especially those with large and complex genomes, a lack of funding and/or prior genome characterization, GS is often out of reach. High throughput phenomics has the potential to augment traditional pedigree selection, reduce costs and amplify impacts of genomic selection, and even create new predictive selection approaches independent of sequencing or pedigrees.


Assuntos
Domesticação , Fenômica , Ecossistema , Genoma de Planta/genética , Melhoramento Vegetal
9.
Genes (Basel) ; 12(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946911

RESUMO

Hydroxycinnamylated anthocyanins (or simply 'acylated anthocyanins') increase color stability in grape products, such as wine. Several genes that are relevant for anthocyanin acylation in grapes have been previously described; however, control of the degree of acylation in grapes is complicated by the lack of genetic markers quantitatively associated with this trait. To characterize the genetic basis of anthocyanin acylation in grapevine, we analyzed the acylation ratio in two closely related biparental families, Vitis rupestris B38 × 'Horizon' and 'Horizon' × Illinois 547-1, for 2 and 3 years, respectively. The acylation ratio followed a bimodal and skewed distribution in both families, with repeatability estimates larger than 0.84. Quantitative trait locus (QTL) mapping with amplicon-based markers (rhAmpSeq) identified a strong QTL from 'Horizon' on chromosome 3, near 15.85 Mb in both families and across years, explaining up to 85.2% of the phenotypic variance. Multiple candidate genes were identified in the 14.85-17.95 Mb interval, in particular, three copies of a gene encoding an acetyl-CoA-benzylalcohol acetyltransferase-like protein within the two most strongly associated markers. Additional population-specific QTLs were found in chromosomes 9, 10, 15, and 16; however, no candidate genes were described. The rhAmpSeq markers reported here, which were previously shown to be highly transferable among the Vitis genus, could be immediately implemented in current grapevine breeding efforts to control the degree of anthocyanin acylation and improve the quality of grapes and their products.


Assuntos
Antocianinas/química , Cromossomos de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Vitis/genética , Vinho/análise , Acilação , Mapeamento Cromossômico , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , América do Norte , Fenótipo , Proteínas de Plantas/genética , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
10.
Emerg Top Life Sci ; 5(2): 337-347, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33973632

RESUMO

Integrating perennial groundcovers (PGC) - sometimes referred to as living mulches or perennial cover crops - into annual cash-crop systems could address root causes of bare-soil practices that lead to negative impacts on soil and water quality. Perennial groundcovers bring otherwise absent functional traits - namely perenniality - into cash-crop systems to preserve soil and regenerate water, carbon, and nutrient cycles. However, if not optimized, they can also cause competitive interactions and yield loss. When designing PGC systems, the goal is to maximize complementarity - spatial and temporal separation of growth and resource acquisition - between PGC and cash crops through both breeding and management. Traits of interest include complementary root and shoot systems, reduced shade avoidance response in the cash-crop, and PGC summer dormancy. Successful deployment of PGC systems could increase both productivity and profitability by improving water- and nutrient-use-efficiency, improving weed and pest control, and creating additional value-added opportunities like stover harvest. Many scientific questions about the inherent interactions at the cell, plant, and ecosystem levels in PGC systems are waiting to be explored. Their answers could enable innovation and refinement of PGC system design for multiple geographies, crops, and food systems, creating a practical and scalable pathway towards resiliency, crop diversification, and sustainable intensification in agriculture.


Assuntos
Ecossistema , Solo , Agricultura , Melhoramento Vegetal , Tecnologia
11.
Front Plant Sci ; 12: 633310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643360

RESUMO

The American cranberry (Vaccinium macrocarpon Ait.) is an iconic North American fruit crop of great cultural and economic importance. Cranberry can be considered a fruit crop model due to its unique fruit nutrient composition, overlapping generations, recent domestication, both sexual and asexual reproduction modes, and the existence of cross-compatible wild species. Development of cranberry molecular resources started very recently; however, further genetic studies are now being limited by the lack of a high-quality genome assembly. Here, we report the first chromosome-scale genome assembly of cranberry, cultivar Stevens, and a draft genome of its close wild relative species Vaccinium microcarpum. More than 92% of the estimated cranberry genome size (492 Mb) was assembled into 12 chromosomes, which enabled gene model prediction and chromosome-level comparative genomics. Our analysis revealed two polyploidization events, the ancient γ-triplication, and a more recent whole genome duplication shared with other members of the Ericaeae, Theaceae and Actinidiaceae families approximately 61 Mya. Furthermore, comparative genomics within the Vaccinium genus suggested cranberry-V. microcarpum divergence occurred 4.5 Mya, following their divergence from blueberry 10.4 Mya, which agrees with morphological differences between these species and previously identified duplication events. Finally, we identified a cluster of subgroup-6 R2R3 MYB transcription factors within a genomic region spanning a large QTL for anthocyanin variation in cranberry fruit. Phylogenetic analysis suggested these genes likely act as anthocyanin biosynthesis regulators in cranberry. Undoubtedly, these new cranberry genomic resources will facilitate the dissection of the genetic mechanisms governing agronomic traits and further breeding efforts at the molecular level.

12.
Plants (Basel) ; 9(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114692

RESUMO

Knowledge of the genetic diversity in populations of crop wild relatives (CWR) can inform effective strategies for their conservation and facilitate utilization to solve agricultural challenges. Two crop wild relatives of the cultivated cranberry are widely distributed in the US. We studied 21 populations of Vaccinium macrocarpon Aiton and 24 populations of Vaccinium oxycoccos L. across much of their native ranges in the US using 32 simple sequence repeat (SSR) markers. We observed high levels of heterozygosity for both species across populations with private alleles ranging from 0 to 26. For V. macrocarpon, we found a total of 613 alleles and high levels of heterozygosity (HO = 0.99, HT = 0.75). We also observed high numbers of alleles (881) and levels of heterozygosity (HO = 0.71, HT = 0.80) in V. oxycoccos (4x). Our genetic analyses confirmed the field identification of a native population of V. macrocarpon on the Okanogan-Wenatchee National Forest in the state of Washington, far outside the previously reported range for the species. Our results will help to inform efforts of the United States Department of Agriculture Agricultural Research Service (USDA-ARS) and the United States Forest Service (USFS) to conserve the most diverse and unique wild cranberry populations through ex situ preservation of germplasm and in situ conservation in designated sites on National Forests.

13.
Plant Sci ; 295: 110415, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32534609

RESUMO

Adaptation of agriculture to climate change and its associated ecological pressures will require new crops, novel trait combinations, and previously unknown phenotypic attributes to deploy in climate resilient cropping systems. Genebanks, a primary source of exotic germplasm for novel crops and breeding materials, need comprehensive methods to detect novel and unknown phenotypes without a priori information about the species or trait under consideration. We demonstrate how persistent homology (PH) and elliptical fourier descriptors (EFD), two morphometric techniques easily applied to image-based data, can serve this purpose by cataloging leaf morphology in the USDA NPGS kura clover collection and demarcating a leaf morphospace for the species. Additionally, we identify a set of representative accessions spanning the leaf morphospace and propose they serve as a kura clover core collection. The core collection will be a framework for monitoring the effects of climate change on kura clover in situ diversity and determining the role of ex situ accessions in modern agriculture.

14.
Insects ; 11(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316296

RESUMO

The pollen stores of bumble bees host diverse microbiota that influence overall colony fitness. Yet, the taxonomic identity of these symbiotic microbes is relatively unknown. In this descriptive study, we characterized the microbial community of pollen provisions within captive-bred bumble bee hives obtained from two commercial suppliers located in North America. Findings from 16S rRNA and ITS gene-based analyses revealed that pollen provisions from the captive-bred hives shared several microbial taxa that have been previously detected among wild populations. While diverse microbes across phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Ascomycota were detected in all commercial hives, significant differences were detected at finer-scale taxonomic resolution based on the supplier source. The causative agent of chalkbrood disease in honey bees, Ascosphaera apis, was detected in all hives obtained from one supplier source, although none of the hives showed symptoms of infection. The shared core microbiota across both commercial supplier sources consisted of two ubiquitous bee-associated groups, Lactobacillus and Wickerhamiella/Starmerella clade yeasts that potentially contribute to the beneficial function of the microbiome of bumble bee pollen provisions.

15.
Front Plant Sci ; 11: 607770, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391320

RESUMO

The cranberry (Vaccinium macrocarpon Ait.) is a North American fruit crop domesticated less than 200 years ago. The USDA began the first cranberry breeding program in response to false-blossom disease in 1929, but after the first generation of cultivars were released in the 1950s, the program was discontinued. Decades later, renewed efforts for breeding cranberry cultivars at Rutgers University and the University of Wisconsin yielded the first modern cultivars in the 2000's. Phenotypic data suggests that current cultivars have changed significantly in terms of fruiting habits compared to original selections from endemic populations. However, due to the few breeding and selection cycles and short domestication period of the crop, it is unclear how much cultivated germplasm differs genetically from wild selections. Moreover, the extent to which selection for agricultural superior traits has shaped the genetic and phenotypic variation of cranberry remains mostly obscure. Here, a historical collection composed of 362 accessions, spanning wild germplasm, first-, second-, and third-generation selection cycles was studied to provide a window into the breeding and domestication history of cranberry. Genome-wide sequence variation of more than 20,000 loci showed directional selection across the stages of cranberry domestication and breeding. Diversity analysis and population structure revealed a partially defined progressive bottleneck when transitioning from early domestication stages to current cranberry forms. Additionally, breeding cycles correlated with phenotypic variation for yield-related traits and anthocyanin accumulation, but not for other fruit metabolites. Particularly, average fruit weight, yield, and anthocyanin content, which were common target traits during early selection attempts, increased dramatically in second- and third-generation cycle cultivars, whereas other fruit quality traits such as Brix and acids showed comparable variation among all breeding stages. Genome-wide association mapping in this diversity panel allowed us to identify marker-trait associations for average fruit weight and fruit rot, which are two traits of great agronomic relevance today and could be further exploited to accelerate cranberry genetic improvement. This study constitutes the first genome-wide analysis of cranberry genetic diversity, which explored how the recurrent use of wild germplasm and first-generation selections into cultivar development have shaped the evolutionary history of this crop species.

16.
Plant Sci ; 290: 110319, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31779916

RESUMO

Adaptation of agriculture to climate change and its associated ecological pressures will require new crops, novel trait combinations, and previously unknown phenotypic attributes to deploy in climate resilient cropping systems. Genebanks, a primary source of exotic germplasm for novel crops and breeding materials, need comprehensive methods to detect novel and unknown phenotypes without a priori information about the species or trait under consideration. We demonstrate how persistent homology (PH) and elliptical Fourier descriptors (EFD), two morphometric techniques easily applied to image-based data, can serve this purpose by cataloging leaf morphology in the USDA NPGS kura clover collection and demarcating a leaf morphospace for the species. Additionally, we identify a set of representative accessions spanning the leaf morphospace and propose they serve as a kura clover core collection. The core collection will be a framework for monitoring the effects of climate change on kura clover in situ diversity and determining the role of ex situ accessions in modern agriculture.


Assuntos
Mudança Climática , Abastecimento de Alimentos , Melhoramento Vegetal , Trifolium/anatomia & histologia , Trifolium/genética , Banco de Sementes
17.
PLoS One ; 14(9): e0222451, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31553750

RESUMO

BACKGROUND: Cranberry (Vaccinium macrocarpon L.) fruit quality traits encompass many properties. Although visual appearance and fruit nutritional constitution have usually been the most important attributes, cranberry textural properties such as firmness have recently gained importance in the industry. Fruit firmness has become a quality standard due to the recent demand increase for sweetened and dried cranberries (SDC), which are currently the most profitable cranberry product. Traditionally, this trait has been measured by the cranberry industry using compression tests; however, it is poorly understood how fruit firmness is influenced by other characteristics. RESULTS: In this study, we developed a high-throughput computer-vision method to measure the internal structure of cranberry fruit, which may in turn influence cranberry fruit firmness. We measured the internal structure of 16 cranberry cultivars measured over a 40-day period, representing more than 3000 individual fruit evaluated for 10 different traits. The internal structure data paired with fruit firmness values at each evaluation period allowed us to explore the correlations between firmness and internal morphological characteristics. CONCLUSIONS: Our study highlights the potential use of internal structure and firmness data as a decision-making tool for cranberry processing, especially to determine optimal harvest times and ensure high quality fruit. In particular, this study introduces novel methods to define key parameters of cranberry fruit that have not been characterized in cranberry yet. This project will aid in the future evaluation of cranberry cultivars for in SDC production.


Assuntos
Frutas/anatomia & histologia , Vaccinium macrocarpon/anatomia & histologia , Produção Agrícola , Fenótipo , Melhoramento Vegetal
18.
Genes (Basel) ; 10(4)2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974783

RESUMO

Breeding efforts in the American cranberry (Vaccinium macrocarpon Ait.), a North American perennial fruit crop of great importance, have been hampered by the limited genetic and phenotypic variability observed among cultivars and experimental materials. Most of the cultivars commercially used by cranberry growers today were derived from a few wild accessions bred in the 1950s. In different crops, wild germplasm has been used as an important genetic resource to incorporate novel traits and increase the phenotypic diversity of breeding materials. Vaccinium microcarpum (Turcz. ex Rupr.) Schmalh. and V. oxycoccos L., two closely related species, may be cross-compatible with the American cranberry, and could be useful to improve fruit quality such as phytochemical content. Furthermore, given their northern distribution, they could also help develop cold hardy cultivars. Although these species have previously been analyzed in diversity studies, genomic characterization and comparative studies are still lacking. In this study, we sequenced and assembled the organelle genomes of the cultivated American cranberry and its wild relative, V. microcarpum. PacBio sequencing technology allowed us to assemble both mitochondrial and plastid genomes at very high coverage and in a single circular scaffold. A comparative analysis revealed that the mitochondrial genome sequences were identical between both species and that the plastids presented only two synonymous single nucleotide polymorphisms (SNPs). Moreover, the Illumina resequencing of additional accessions of V. microcarpum and V. oxycoccos revealed high genetic variation in both species. Based on these results, we provided a hypothesis involving the extension and dynamics of the last glaciation period in North America, and how this could have shaped the distribution and dispersal of V. microcarpum. Finally, we provided important data regarding the polyploid origin of V. oxycoccos.


Assuntos
Genoma de Planta/genética , Organelas/genética , Vaccinium macrocarpon/genética , Frutas/genética , Genoma Mitocondrial/genética , Genótipo , Repetições de Microssatélites/genética , Extratos Vegetais/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Especificidade da Espécie , Estados Unidos
19.
Front Plant Sci ; 9: 1310, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258453

RESUMO

The development of high-throughput genotyping has made genome-wide association (GWAS) and genomic selection (GS) applications possible for both model and non-model species. The exploitation of genome-assisted approaches could greatly benefit breeding efforts in American cranberry (Vaccinium macrocarpon) and other minor crops. Using biparental populations with different degrees of relatedness, we evaluated multiple GS methods for total yield (TY) and mean fruit weight (MFW). Specifically, we compared predictive ability (PA) differences between univariate and multivariate genomic best linear unbiased predictors (GBLUP and MGBLUP, respectively). We found that MGBLUP provided higher predictive ability (PA) than GBLUP, in scenarios with medium genetic correlation (8-17% increase with corg~0.6) and high genetic correlations (25-156% with corg~0.9), but found no increase when genetic correlation was low. In addition, we found that only a few hundred single nucleotide polymorphism (SNP) markers are needed to reach a plateau in PA for both traits in the biparental populations studied (in full linkage disequilibrium). We observed that higher resemblance among individuals in the training (TP) and validation (VP) populations provided greater PA. Although multivariate GS methods are available, genetic correlations and other factors need to be carefully considered when applying these methods for genetic improvement.

20.
PeerJ ; 6: e5461, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30128209

RESUMO

Image-based phenotyping methodologies are powerful tools to determine quality parameters for fruit breeders and processors. The fruit size and shape of American cranberry (Vaccinium macrocarpon L.) are particularly important characteristics that determine the harvests' processing value and potential end-use products (e.g., juice vs. sweetened dried cranberries). However, cranberry fruit size and shape attributes can be difficult and time consuming for breeders and processors to measure, especially when relying on manual measurements and visual ratings. Therefore, in this study, we implemented image-based phenotyping techniques for gathering data regarding basic cranberry fruit parameters such as length, width, length-to-width ratio, and eccentricity. Additionally, we applied a persistent homology algorithm to better characterize complex shape parameters. Using this high-throughput artificial vision approach, we characterized fruit from 351 progeny from a full-sib cranberry population over three field seasons. Using a covariate analysis to maximize the identification of well-supported quantitative trait loci (QTL), we found 252 single QTL in a 3-year period for cranberry fruit size and shape descriptors from which 20% were consistently found in all years. The present study highlights the potential for the identified QTL and the image-based methods to serve as a basis for future explorations of the genetic architecture of fruit size and shape in cranberry and other fruit crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...