Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(12): 339, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821748

RESUMO

The capacity of Pseudomonas aeruginosa to assimilate nutrients is essential for niche colonization and contributes to its pathogenicity. Isocitrate lyase (ICL), the first enzyme of the glyoxylate cycle, redirects isocitrate from the tricarboxylic acid cycle to render glyoxylate and succinate. P. aeruginosa ICL (PaICL) is regarded as a virulence factor due to its role in carbon assimilation during infection. The AceA/ICL protein family shares the catalytic domain I, triosephosphate isomerase barrel (TIM-barrel). The carboxyl terminus of domain I is essential for Escherichia coli ICL (EcICL) of subfamily 1. PaICL, which belongs to subfamily 3, has domain II inserted at the periphery of domain I, which is believed to participate in enzyme oligomerization. In addition, PaICL has the α13-loop-α14 (extended motif), which protrudes from the enzyme core, being of unknown function. This study investigates the role of domain II, the extended motif, and the carboxyl-terminus (C-ICL) and amino-terminus (N-ICL) regions in the function of the PaICL enzyme, also as their involvement in the virulence of P. aeruginosa PAO1. Deletion of domain II and the extended motif results in enzyme inactivation and structural instability of the enzyme. The His6-tag fusion at the C-ICL protein produced a less efficient enzyme than fusion at the N-ICL, but without affecting the acetate assimilation or virulence. The PaICL homotetrameric structure of the enzyme was more stable in the N-His6-ICL than in the C-His6-ICL, suggesting that the C-terminus is critical for the ICL quaternary conformation. The ICL-mutant A39 complemented with the recombinant proteins N-His6-ICL or C-His6-ICL were more virulent than the WT PAO1 strain. The findings indicate that the domain II and the extended motif are essential for the ICL structure/function, and the C-terminus is involved in its quaternary structure conformation, confirming that in P. aeruginosa, the ICL is essential for acetate assimilation and virulence.


Assuntos
Isocitrato Liase , Pseudomonas aeruginosa , Isocitrato Liase/genética , Isocitrato Liase/química , Isocitrato Liase/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ciclo do Ácido Cítrico , Glioxilatos/metabolismo , Acetatos/metabolismo
2.
Front Microbiol ; 12: 785112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867927

RESUMO

The pathogenic bacterium Pseudomonas aeruginosa possesses high metabolic versatility, with its effectiveness to cause infections likely due to its well-regulated genetic content. P. aeruginosa PAO1 has at least six fadD paralogous genes, which have been implicated in fatty acid (FA) degradation and pathogenicity. In this study, we used mutagenesis and a functional approach in P. aeruginosa PAO1 to determine the roles of the fadD4 gene in acyclic terpene (AT) and FA assimilation and on pathogenicity. The results indicate that fadD4 encodes a terpenoyl-CoA synthetase utilized for AT and FA assimilation. Additionally, mutations in fadD paralogs led to the modification of the quorum-sensing las/rhl systems, as well as the content of virulence factors pyocyanin, biofilm, rhamnolipids, lipopolysaccharides (LPS), and polyhydroxyalkanoates. In a Caenorhabditis elegans in vivo pathogenicity model, culture supernatants from the 24-h-grown fadD4 single mutant increased lethality compared to the PAO1 wild-type (WT) strain; however, the double mutants fadD1/fadD2, fadD1/fadD4, and fadD2/fadD4 and single mutant fadD2 increased worm survival. A correlation analysis indicated an interaction between worm death by the PAO1 strain, the fadD4 mutation, and the virulence factor LPS. Fatty acid methyl ester (FAME) analysis of LPS revealed that a proportion of the LPS and FA on lipid A were modified by the fadD4 mutation, suggesting that FadD4 is also involved in the synthesis/degradation and modification of the lipid A component of LPS. LPS isolated from the fadD4 mutant and double mutants fadD1/fadD4 and fadD2/fadD4 showed a differential behavior to induce an increase in body temperature in rats injected with LPS compared to the WT strain or from the fadD1 and fadD2 mutants. In agreement, LPS isolated from the fadD4 mutant and double mutants fadD1/fadD2 and fadD2/fadD4 increased the induction of IL-8 in rat sera, but IL1-ß cytokine levels decreased in the double mutants fadD1/fadD2 and fadD1/fadD4. The results indicate that the fadD genes are implicated in the degree of pathogenicity of P. aeruginosa PAO1 induced by LPS-lipid A, suggesting that FadD4 contributes to the removal of acyl-linked FA from LPS, rendering modification in its immunogenic response associated to Toll-like receptor TLR4. The genetic redundancy of fadD is important for bacterial adaptability and pathogenicity over the host.

3.
Front Oncol ; 10: 1111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793477

RESUMO

Melanoma is an aggressive cancer that utilizes multiple signaling pathways, including those that involve oncogenes, proto-oncogenes, and tumor suppressors. It has been suggested that melanoma formation requires cross-talk of the PI3K/Akt/mTOR and Ras-ERK pathways. This pathway cross-talk has been associated with aggressiveness, drug resistance, and metastasis; thus, simultaneous targeting of components of the different pathways involved in melanoma may aid in therapy. We have previously reported that bacterial cyclodipeptides (CDPs) are cytotoxic to HeLa cells and inhibit Akt phosphorylation. Here, we show that CDPs decreased melanoma size and tumor formation in a subcutaneous xenografted mouse melanoma model. In fact, CDPs accelerated death of B16-F0 murine melanoma cells. In mice, antitumor effect was improved by treatment with CDPs using cyclodextrins as drug vehicle. In tumors, CDPs caused nuclear fragmentation and changed the expression of the Bcl-2 and Ki67 apoptotic markers and promoted restoration of hyperactivation of the PI3K/Akt/mTOR pathway. Additionally, elements of several signaling pathways such as the Ras-ERK, PI3K/JNK/PKA, p27Kip1/CDK1/survivin, MAPK, HIF-1, epithelial-mesenchymal transition, and cancer stem cell pathways were also modified by treatment of xenografted melanoma mice with CDPs. The findings indicate that the multiple signaling pathways implicated in aggressiveness of the murine B16-F0 melanoma line are targeted by the bacterial CDPs. Molecular modeling of CDPs with protein kinases involved in neoplastic processes suggested that these compounds could indeed interact with the active site of the enzymes. The results suggest that CDPs may be considered as potential antineoplastic drugs, interfering with multiple pathways involved in tumor formation and progression.

4.
World J Microbiol Biotechnol ; 35(12): 189, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748890

RESUMO

Fossil fuels consumption impacts the greenhouse gas emissions. Biofuels are considered as alternative renewable energy sources to reduce the fossil fuels dependency. Bioethanol produced by recombinant microorganisms is a widely suggested alternative to increase the yield in fermentation processes. However, ethanol and acetate accumulation under the fermentation process had been described as important stressors for the metabolic capabilities of the microorganisms, stopping the fermentation process and affecting the ethanol yield. Ethanol tolerance is a determining factor in the improvement of fermentative properties of microorganisms; however understanding of ethanol tolerance is limited. The engineered Escherichia coli KO11 strain has been studied in detail and used as an ethanologenic bacteria model. The strain is capable of using glucose and xylose for an efficient ethanol yield. In the current work, the effect of the iron-sulfur cluster (ISC) over-expression in the KO11 strain, on its tolerance and ethanol yield, was evaluated. Fatty acids profiles of membrane phospholipids in the E. coli KO11 were modified under ethanol addition, but not due to the hscA mutation. The hscA mutation provoked a decrease in ethanol tolerance in the Kmp strain when was grown with 2% ethanol, in comparison to KO11 parent strain. Ethanol tolerance was improved in the mutant Kmp complemented with the recombinant isc gene cluster (pJC10 plasmid) from LD50 2.16% to LD50 3.8% ethanol. In batch fermentation on 1 L bioreactor using mineral medium with glucose (120 g/L), the KO11 strain showed ethanol production efficiencies of ~ 76.9%, while the hscA mutant (Kmp) ~ 75.4% and the transformed strain Kmp(pJC10) showed ~ 92.4% efficiency. Ethanol amount increase in the engineered Kmp(pJC10) strain was correlated with less organic acids (such as acetate and lactate) production in the fermentation medium (2.3 g/L), compared to that in the KO11 (17.05 g/L) and the Kmp (16.62 g/L). Alcohol dehydrogenase (ADH) activity was increased ~ 350% in the transformed Kmp(pJC10) strain, whereas in the Kmp mutant, the phosphoglycerate kinase (PGK), pyruvate kinase (PYK), and ADH activities were diminished, comparing to KO11. The results suggest that the isc system over-expression in the ethanologenic E. coli KO11 strain, increases ethanol yield mainly by improving ethanol tolerance and ADH activity, and by redirecting the metabolic flux from acetate synthesis to ethanol.


Assuntos
Ácidos/metabolismo , Tolerância a Medicamentos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Família Multigênica/genética , Álcool Desidrogenase/genética , Técnicas de Cultura Celular por Lotes , Biocombustíveis , Reatores Biológicos , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Etanol/toxicidade , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Fermentação , Engenharia Genética , Glucose/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas Ferro-Enxofre/genética , Cinética , Redes e Vias Metabólicas/genética , Mutação , Xilose/metabolismo
5.
Res Microbiol ; 169(6): 324-334, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29787835

RESUMO

Pseudomonas aeruginosa metabolizes leucine through the leucine/isovalerate utilization pathway, whose enzymes are encoded in the liuRABCDE gene cluster (liu). In this study, we investigated the role of the LiuR protein in the liu cluster regulation. Our results indicated that liu expression is regulated at the transcriptional level by LiuR. Mobility shift assays using purified recombinant His-tagged LiuR showed that it was able to bind at the promoter region of liuR, in a dose-dependent manner. Results revealed that expression of the liu operon is subjected to carbon catabolite repression control (CCR); protein LiuD was strongly expressed in the presence of leucine, but it was repressed in the presence of glucose or succinate. Furthermore, this CCR control was dependent on LiuR as in the liuR- mutant the LiuD protein was strongly expressed in all the carbon sources tested. In agreement with this result, in the absence of the Crc protein, LiuD was expressed independently of the carbon source used, whereas in a cbrB- mutant its expression was severely impaired. The results indicated that the liu cluster is subjected to a coordinated transcriptional and translational regulation by the LiuR repressor and by the CbrAB/Crc system, respectively, in response to the available carbon source.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Leucina/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Sequência de Bases , Carbono/metabolismo , Pseudomonas aeruginosa/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética
6.
Fungal Biol ; 119(12): 1179-1193, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26615741

RESUMO

In fungi, heterotrimeric G proteins are key regulators of biological processes such as mating, virulence, morphology, among others. Mucor circinelloides is a model organism for many biological processes, and its genome contains the largest known repertoire of genes that encode putative heterotrimeric G protein subunits in the fungal kingdom: twelve Gα (McGpa1-12), three Gß (McGpb1-3), and three Gγ (McGpg1-3). Phylogenetic analysis of fungal Gα showed that they are divided into four distinct groups as reported previously. Fungal Gß and Gγ are also divided into four phylogenetic groups, and to our understanding this is the first report of a phylogenetic classification for fungal Gß and Gγ subunits. Almost all genes that encode putative heterotrimeric G subunits in M. circinelloides are differentially expressed during dimorphic growth, except for McGpg1 (Gγ) that showed very low mRNA levels at all developmental stages. Moreover, several of the subunits are expressed in a similar pattern and at the same level, suggesting that they constitute discrete complexes. For example, McGpb3 (Gß), and McGpg2 (Gγ), are co-expressed during mycelium growth, and McGpa1, McGpb2, and McGpg2, are co-expressed during yeast development. These findings provide the conceptual framework to study the biological role of these genes during M. circinelloides morphogenesis.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Mucor/crescimento & desenvolvimento , Mucor/metabolismo , Filogenia , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/genética , Dados de Sequência Molecular , Morfogênese , Mucor/química , Mucor/genética , Alinhamento de Sequência
7.
J Biochem ; 154(3): 291-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23760555

RESUMO

The enzyme 3-methylcrotonyl-CoA carboxylase from Pseudomonas aeruginosa (Pa-MCCase) is essential for the assimilation of leucine and acyclic monoterpenes. The structure of the Pa-MCCase was analysed by computational modelling to establish the molecular basis of substrate recognition. The active site is composed of two zones, which may play important roles in substrate recognition and catalysis. To further understand the interactions of the active site with the substrate, site-directed mutagenesis of the conserved residues S187 and R51 located in zone I, and F417, Y422 and G423 from zone II of the Pa-MCCase was carried out. The residue substitutions S187A and Y422D completely abolished the Pa-MCCase activity, whereas substitutions R51A, F417Y and G423A indicated that these residues are not essential. Interestingly, the residues R47, R51 and S187 form a well-defined pocket that may play important roles in substrate coupling to the Co-A motif. At zone one, mutation S187A was essential, but mutant R51A retained activity, suggesting that the R51 function could be relegated to neighbouring positive residues. Residue Y422 instead of contributing to substrate discrimination, it may participate in deprotonation of methyl group on MC-CoA, because it is located at adequate distances from the 3-methylcrotonyl-chain and carboxybiotin groups in the Pa-MCCase carboxylation site.


Assuntos
Proteínas de Bactérias/química , Carbono-Carbono Ligases/química , Pseudomonas aeruginosa/química , Serina/química , Tirosina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Carbono-Carbono Ligases/genética , Domínio Catalítico , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
8.
World J Microbiol Biotechnol ; 29(6): 991-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23338961

RESUMO

Isocitrate lyase, encoded by the aceA gene, plays an important role in the ability of Pseudomonas aeruginosa to grow on fatty acids, acetate, acyclic terpenes, and amino acids. Phylogenetic analysis indicated that the ICL superfamily is divided in two families: the ICL family, which includes five subfamilies, and the 2-methylisocitrate lyase (MICL) family. ICL from P. aeruginosa (ICL-Pa) was identified in a different ICL node (subfamily 3) than other Pseudomonas ICL enzymes (grouped in subfamily 1). Analysis also showed that psychrophilic bacteria are mainly grouped in ICL subfamily 3, whose ICL proteins contain the highly conserved catalytic pattern QIENQVSDEKQCGHQD. We performed site-directed mutagenesis, enzymatic activity, and structure modeling of conserved residues in mutated ICLs by using ICL-Pa as a model. Our results indicated that the N214 residue is essential for catalytic function, while mutating the Q211, E219, and Q221 residues impairs its catalytic and thermostability properties. Our findings suggest that conserved residues in the subfamily 3 signature of ICL-Pa play important roles in catalysis and thermostability and are likely associated with the catalytic loop structural conformation.


Assuntos
Aminoácidos/genética , Aminoácidos/metabolismo , Isocitrato Liase/genética , Isocitrato Liase/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Domínio Catalítico , Análise por Conglomerados , Biologia Computacional , Sequência Conservada , Análise Mutacional de DNA , Estabilidade Enzimática , Isocitrato Liase/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Filogenia , Conformação Proteica , Estabilidade Proteica , Homologia de Sequência
9.
World J Microbiol Biotechnol ; 28(3): 1185-91, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22805839

RESUMO

Pseudomonas aeruginosa is a versatile bacterium that can grow using citronellol or leucine as sole carbon source. For both compounds the degradation pathways converge at the key enzyme 3-methylcrotonyl coenzyme-A carboxylase (MCCase). This enzyme is a complex formed by two subunits (α and ß), encoded by the liuD and liuB genes, respectively; both are essential for enzyme function. Previously, both subunits had been separately expressed and then the complex re-constituted, however this methodology is laborious and produces low yield of active enzyme. In this work, the MCCase subunits were co-expressed in the same plasmid and purified in one step by affinity chromatography using the LiuD-His tag protein, interacting with the LiuB-S tag recombinant protein. The purified enzyme lost most of the activity within few hours of storage. The co-expressed subunits formed an (αß)(4) complex that suffered a modification of its oligomerization state after storage, which probably contributed to the loss on activity observed. The recombinant MCCase enzyme presented optimum pH and temperature values of 9.0 and 30º C, respectively. Functionally, MCCase showed Michaelian kinetics behavior with a K(m) for its substrate and V(max) of 168 µM and 430 nmoles mg(-1)min(-1), respectively. The results suggest that the co-expression and co-purification of the subunits is a suitable procedure to obtain the active complex of the MCCase from Pseudomonas aeruginosa in a single step.


Assuntos
Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/isolamento & purificação , Expressão Gênica , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Biotecnologia/métodos , Carbono-Carbono Ligases/química , Carbono-Carbono Ligases/metabolismo , Cromatografia de Afinidade , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Plasmídeos , Subunidades Proteicas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Temperatura , Fatores de Tempo
10.
J Biosci Bioeng ; 113(5): 614-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22280963

RESUMO

In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production.


Assuntos
Agave/metabolismo , Bebidas Alcoólicas/microbiologia , Etanol/metabolismo , Fermentação , Microbiologia de Alimentos , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Agave/química , Agave/microbiologia , Metabolismo dos Carboidratos , Etanol/análise , Kluyveromyces/genética , Kluyveromyces/isolamento & purificação , RNA Ribossômico/genética
11.
Mol Biol Rep ; 37(4): 1787-91, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19597963

RESUMO

Pseudomonas aeruginosa is able to utilize leucine/isovalerate and acyclic terpenes as sole carbon sources. Key enzymes which play an important role in these catabolic pathways are 3-hydroxy-3-methylglutaryl-coenzyme A (CoA) lyase (EC 4.1.3.4; HMG-CoA lyase) and the 3-hydroxy-3-isohexenylglutaryl-CoA lyase (EC 4.1.2.26; HIHG-CoA lyase), respectively. HMG-CoA lyase is encoded by the liuE gene while the gene for HIHG-CoA lyase remains unidentified. A mutant in the liuE gene was unable to utilize both leucine/isovalerate and acyclic terpenes indicates an involvement of liuE in both catabolic pathways (Chávez-Avilés et al. 2009, FEMS Microbiol Lett 296:117-123). The LiuE protein was purified as a His-tagged recombinant protein and in addition to show HMG-CoA lyase activity (Chávez-Avilés et al. 2009, FEMS Microbiol Lett 296:117-123), also displays HIHG-CoA lyase activity, indicating a bifunctional role in both the leucine/isovalerate and acyclic terpenes catabolic pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Oxo-Ácido-Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Eletroforese em Gel de Poliacrilamida , Redes e Vias Metabólicas , Proteínas Recombinantes/metabolismo
12.
FEMS Microbiol Lett ; 296(1): 117-23, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19459965

RESUMO

The enzymes involved in the catabolism of leucine are encoded by the liu gene cluster in Pseudomonas aeruginosa PAO1. A mutant in the liuE gene (ORF PA2011) of P. aeruginosa was unable to utilize both leucine/isovalerate and acyclic terpenes as the carbon source. The liuE mutant grown in culture medium with citronellol accumulated metabolites of the acyclic terpene pathway, suggesting an involvement of liuE in both leucine/isovalerate and acyclic terpene catabolic pathways. The LiuE protein was expressed as a His-tagged recombinant polypeptide purified by affinity chromatography in Escherichia coli. LiuE showed a mass of 33 kDa under denaturing and 79 kDa under nondenaturing conditions. Protein sequence alignment and fingerprint sequencing suggested that liuE encodes 3-hydroxy-3-methylglutaryl-coenzyme A lyase (HMG-CoA lyase), which catalyzes the cleavage of HMG-CoA to acetyl-CoA and acetoacetate. LiuE showed HMG-CoA lyase optimal activity at a pH of 7.0 and 37 degrees C, an apparent K(m) of 100 microM for HMG-CoA and a V(max) of 21 micromol min(-1) mg(-1). These results demonstrate that the liuE gene of P. aeruginosa encodes for the HMG-CoA lyase, an essential enzyme for growth in both leucine and acyclic terpenes.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Leucina/metabolismo , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Terpenos/metabolismo , Acetoacetatos/metabolismo , Acil Coenzima A/metabolismo , Coenzima A/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Deleção de Genes , Expressão Gênica , Genes Bacterianos , Concentração de Íons de Hidrogênio , Cinética , Redes e Vias Metabólicas , Peso Molecular , Família Multigênica , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/isolamento & purificação , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Temperatura
13.
FEMS Microbiol Lett ; 269(2): 309-16, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17319879

RESUMO

Pseudomonas aeruginosa PAO1 mutants affected in acyclic monoterpenes, n-octanol, and acetate assimilation were isolated using transposon mutagenesis. The isocitrate lyase gene (aceA) corresponding to ORF PA2634 of the PAO1 strain genome was identified in one of these mutants. The aceA gene encodes a protein that is 72% identical to the isocitrate lyase (ICL) characterized from Colwellia maris, but is less than 30% identical to their homologues from pseudomonads. The genetic arrangement of aceA suggests that it is a monocistronic gene, and no adjacent related genes were found. The ICL protein was detected as a 60-kDa band in sodium dodecyl sulfate polyacrylamide gel electrophoresis from cultures grown on acetate, but not in glucose-grown PAO1 cultures. Genetic complementation further confirmed that the aceA gene encodes the ICL enzyme. The ICL enzyme activity in crude extracts from cultures of the PAO1 strain was induced by acetate, citronellol and leucine, and repressed by growth on glucose or citrate. These results suggest that ICL is involved in the assimilation of acetate, acyclic monoterpenes of the citronellol family, alkanols, and leucine, in which the final intermediary acetyl-coenzyme A may be channelled to the glyoxylate shunt.


Assuntos
Acetatos/metabolismo , Proteínas de Bactérias/genética , Isocitrato Liase/genética , Leucina/metabolismo , Monoterpenos/metabolismo , Pseudomonas aeruginosa/enzimologia , Monoterpenos Acíclicos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Isocitrato Liase/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...