Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 247: 120766, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37897996

RESUMO

Biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), have emerged as an alternative to petrochemical-based plastics. The present work explores the production of PHAs based on the biotransformation of potato processing wastewater and addresses two different strategies for PHA recovery. To this end, culture conditions for PHA synthesis by Cupriavidus necator DSM 545 were optimized on a laboratory scale using a response surface methodology-based experimental design. Optimal conditions rendered a PHB, poly(3-hydroxybutyrate), accumulation of 83.74 ± 2.37 % (5.1 ± 0.2 gL-1), a 1.4-fold increase compared to the initial conditions. Moreover, polymer extraction with non-halogenated agent improved PHB recovery compared to chloroform method (PHB yield up to 78.78 ± 0.57 %), while maintaining PHB purity. (99.83 ± 4.95 %). Overall, the present work demonstrated the potential valorization of starch-based wastewater by biotransformation into PHBs, a high value-added product, and showed that recovery approaches more eco-friendly than the traditional treatments could be applied to PHB recovery to some extent.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Solanum tuberosum , Ácido 3-Hidroxibutírico/metabolismo , Cupriavidus necator/metabolismo , Águas Residuárias , Solanum tuberosum/metabolismo , Amido , Biotransformação , Poliésteres/metabolismo
2.
Bioresour Technol ; 386: 129493, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37460022

RESUMO

Polyhydroxyalkanoates (PHAs) are considered an alternative to fossil fuel-based plastics. However, in spite of their interesting properties and their multiple applications, PHAs have not taken off as an industrial development. The reason is mainly due to the associated high-production costs, which represent a significant constraint. In recent years, the interest in lignocellulosic biomass (LCB) derived from crop, forestry or municipal waste by-products has been growing, since LCB is plentiful, cheap, renewable and sustainable. On this matter, the valorization of LCB into PHAs represents a promising route within circular economy strategies. However, much effort still needs to be made to improve the bioconversion yields and to enhance PHA production efficiency. So, this review focuses on reviewing the different options for PHA synthesis from LCB, stressing the progress in biomass deconstruction, enzymatic hydrolysis and microbial conversion. In addition, some of the current biological strategies for improving the process of bioconversion are discussed.


Assuntos
Poli-Hidroxialcanoatos , Lignina , Plásticos , Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...