Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 288(Pt 2): 132393, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34600926

RESUMO

Sitagliptin (SITA) is an antidiabetic drug consumed worldwide in high quantities. Because of the low removal rate of this compound in conventional wastewater treatment plants (WWTPs), it enters receiving surface waters with the discharged WWTP effluents. SITA can be detected up to µg/L concentration in rivers. In this study, UV (254 nm) and (V)UV (185 nm + 254 nm) irradiation was applied in laboratory scale to degrade SITA. The effect of three parameters was evaluated on the degradation rate, namely i) the efficiency in UV and (V)UV irradiation, ii) the presence or absence of dissolved oxygen, iii) the matrix effect of WWTP effluent. Degradation rate of SITA was largely increased by (V)UV irradiation, and decreased in WWTP effluent as expected. The presence of dissolved oxygen increased the degradation rate only in UV experiments and did not have a considerable effect in (V)UV experiments. In total, 14 transformation products (TPs) were identified (twelve new); their structures were proposed based on high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy analyses. The most characteristic reaction steps of the degradation of SITA involved nucleophilic aromatic photosubstitution whereas hydroxide ions acted as attacking nucleophiles and replaced F atoms of the phenyl moiety by hydroxide groups, in agreement with the increase in photolysis rate with increasing pH. The photochemical degradation pathway of SITA was also interpreted. Kinetic profiles revealed TP 421, TP 208 and TP 192 to be the most recalcitrant TPs.


Assuntos
Fosfato de Sitagliptina , Água , Cinética , Física
2.
Chemosphere ; 275: 130080, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33667764

RESUMO

For the first time, high energy VUV photons and generation of O3 by (V)UV lamps were applied together for removal of active pharmaceutical ingredients (APIs) from biologically treated wastewater (BTWW) in pilot-scale. The core of the pilot container unit was a photoreactor assembly consisting of six photoreactors, each containing a low-pressure Hg lamp (UV dose of 1.2 J/cm2 and 6.6 J/cm2 at 185 nm and 254 nm, respectively). BTWW was irradiated (4.75 min residence time) by (V)UV light in presence of in situ photochemically generated O3 from coolant air of the lamps. Experiments were conducted at the site of two wastewater treatment plants. Out of seven target APIs (namely carbamazepine, ciprofloxacin, clarithromycin, diclofenac, metoprolol, sitagliptin, and sulfamethoxazole), 80-100% removal was accomplished for five and 40-80% for two compounds. Two degradation products of carbamazepine were detected. Degradation products of other target compounds were not found. The applied O3 dose was 30-45 µg O3/mg dissolved organic carbon. Inactivation of up to log-4.8, log-4.5 and log-3.8 could be achieved for total coliform, Escherichia coli and Enterococcus faecalis, respectively. SOS Chromotest indicated no genotoxicity nor acute toxicity. Generation of neither NH4+, NO2- nor NO3- was observed during post-treatment. Electric energy per order values were calculated for the first time for (V)UV/O3 treatment in BTWW with a median value of 1.5 kWh/m3. This technology can be proposed for post-treatment of BTWWs of small settlements or livestock farms to degrade micropollutants before water discharge or for production of irrigation water. Further studies are essential in pilot-scale for other applications.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Oxirredução , Tecnologia , Raios Ultravioleta , Águas Residuárias , Poluentes Químicos da Água/análise
3.
J Phys Chem A ; 119(28): 7753-65, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25859909

RESUMO

The direct reaction kinetic method of low pressure fast discharge flow (DF) with resonance fluorescence monitoring of OH (RF) has been applied to determine rate coefficients for the overall reactions OH + C2H5F (EtF) (1) and OH + CH3C(O)F (AcF) (2). Acetyl fluoride reacts slowly with the hydroxyl radical, the rate coefficient at laboratory temperature is k2(300 K) = (0.74 ± 0.05) × 10(-14) cm(3) molecule(-1) s(-1) (given with 2σ statistical uncertainty). The temperature dependence of the reaction does not obey the Arrhenius law and it is described well by the two-exponential rate expression of k2(300-410 K) = 3.60 × 10(-3) exp(-10500/T) + 1.56 × 10(-13) exp(-910/T) cm(3) molecule(-1) s(-1). The rate coefficient of k1 = (1.90 ± 0.19) × 10(-13) cm(3) molecule(-1) s(-1) has been determined for the EtF-reaction at room temperature (T = 298 K). Microscopic mechanisms for the OH + CH3C(O)F reaction have also been studied theoretically using the ab initio CBS-QB3 and G4 methods. Variational transition state theory was employed to obtain rate coefficients for the OH + CH3C(O)F reaction as a function of temperature on the basis of the ab initio data. The calculated rate coefficients are in good agreement with the experimental data. It is revealed that the reaction takes place predominantly via the indirect H-abstraction mechanism involving H-bonded prereactive complexes and forming the nascent products of H2O and the CH2CFO radical. The non-Arrhenius behavior of the rate coefficient at temperatures below 500 K is ascribed to the significant tunneling effect of the in-the-plane H-abstraction dynamic bottleneck. The production of FC(O)OH + CH3 via the addition/elimination mechanism is hardly competitive due to the significant barriers along the reaction routes. Photochemical experiments of AcF were performed at 248 nm by using exciplex lasers. The total photodissociation quantum yield for CH3C(O)F has been found significantly less than unity; among the primary photochemical processes, C-C bond cleavage is by far dominating compared with CO-elimination. The absorption spectrum of AcF has also been determined by displaying a strong blue shift compared with the spectra of aliphatic carbonyls. Consequences of the results on atmospheric chemistry have been discussed.

4.
J Phys Chem A ; 115(33): 9160-8, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21786774

RESUMO

The kinetics of the overall reaction between OH radicals and 2,3-pentanedione (1) were studied using both direct and relative kinetic methods at laboratory temperature. The low pressure fast discharge flow experiments coupled with resonance fluorescence detection of OH provided the direct rate coefficient of (2.25 ± 0.44) × 10(-12) cm(3) molecule(-1) s(-1). The relative-rate experiments were carried out both in a collapsible Teflon chamber and a Pyrex reactor in two laboratories using different reference reactions to provide the rate coefficients of 1.95 ± 0.27, 1.95 ± 0.34, and 2.06 ± 0.34, all given in 10(-12) cm(3) molecule(-1) s(-1). The recommended value is the nonweighted average of the four determinations: k(1) (300 K) = (2.09 ± 0.38) × 10(-12) cm(3) molecule(-1) s(-1), given with 2σ accuracy. Absorption cross sections for 2,3-pentanedione were determined: the spectrum is characterized by two wide absorption bands between 220 and 450 nm. Pulsed laser photolysis at 351 nm was used and the depletion of 2,3-pentanedione (2) was measured by GC to determine the photolysis quantum yield of Φ(2) = 0.11 ± 0.02(2σ) at 300 K and 1000 mbar synthetic air. An upper limit was estimated for the effective quantum yield of 2,3-pentanedione applying fluorescent lamps with peak wavelength of 312 nm. Relationships between molecular structure and OH reactivity, as well as the atmospheric fate of 2,3-pentanedione, have been discussed.


Assuntos
Atmosfera/química , Radical Hidroxila/química , Pentanonas/química , Absorção , Cinética , Lasers , Estrutura Molecular , Fotólise/efeitos da radiação , Pressão , Teoria Quântica , Espectrofotometria Ultravioleta , Temperatura , Termodinâmica , Raios Ultravioleta
5.
Chemphyschem ; 11(18): 3883-95, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20957713

RESUMO

Pulsed laser photolysis (PLP) at λ=248 and 308 nm coupled with gas-chromatographic analysis is applied to determine the photodissociation quantum yield (QY) of methyl ethyl ketone (MEK). Temperature dependent UV absorption cross-sections [σ(MEK)(λ,T)] are also determined. At 308 nm, the QY decreases with decreasing temperature (T=323-233 K) and with increasing pressure (P=67-998 mbar synthetic air). Stern-Volmer (SV) analysis of the T and P dependent QYs provides the experimental estimate of E(S1)=398±9 kJ mol(-1) (=300±6 nm) for the barrier of the first excited singlet state (S(1)). The QY at 248 nm is close to unity and independent of pressure (T=298 K). Theoretical reaction pathways are examined systematically on the basis of CASPT2/6-31+G* calculations. Among three possible pathways, a S(1)/S(0)-diradical mechanism, which involves H atom transfer on the S(1) surface, followed by a nonadiabatic transition at a diradical isomer of MEK, explains the experimental data very well. Therefore, this unusual mechanism, which is not seen in any smaller carbonyl compounds, is proposed as an important pathway for the MEK dissociation. Our study supports the view that both the absorption cross-sections and the QYs of carbonyls have significant temperature dependences that should be taken into account for accurate modelling of atmospheric chemistry.

6.
Phys Chem Chem Phys ; 9(31): 4142-54, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17687464

RESUMO

The reactions CH(3)CO + O(2)--> products (1), CH(3)CO + O(2)--> OH +other products (1b) and CH(3)C(O)CH(2) + O(2)--> products (2) have been studied in isothermal discharge flow reactors with laser induced fluorescence monitoring of OH and CH(3)C(O)CH(2) radicals. The experiments have been performed at overall pressures between 1.33 and 10.91 mbar of helium and 298 +/- 1 K reaction temperature. OH formation has been found to be the dominant reaction channel for CH(3)CO + O(2): the branching ratio, Gamma(1b) = k(1b)/k(1), is close to unity at around 1 mbar, but decreases rapidly with increasing pressure. The rate constant of the overall reaction, k(2), has been found to be pressure dependent: the fall-off behaviour has been analysed in comparison with reported data. Electronic structure calculations have confirmed that at room temperature the reaction of CH(3)C(O)CH(2) with O(2) is essentially a recombination-type process. At high temperatures, the further reactions of the acetonyl-peroxyl adduct may yield OH radicals, but the most probable channel seems to be the O(2)-catalysed keto-enol transformation of acetonyl. Implications of the results for atmospheric modelling studies have been discussed.


Assuntos
Físico-Química/métodos , Radical Hidroxila/química , Cetonas/química , Oxigênio/química , Atmosfera , Catálise , Eletrônica , Radicais Livres , Hélio/química , Cinética , Modelos Químicos , Pressão , Teoria Quântica , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...