Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228372

RESUMO

Tumor cells subvert immune surveillance or lytic stress by harnessing inhibitory signals. Hence, bispecific antibodies have been developed to direct CTLs to the tumor site and foster immune-dependent cytotoxicity. Although applied with success, T cell-based immunotherapies are not universally effective partially because of the expression of pro-survival factors by tumor cells protecting them from apoptosis. Here, we report a CRISPR/Cas9 screen in human non-small cell lung cancer cells designed to identify genes that confer tumors with the ability to evade the cytotoxic effects of CD8+ T lymphocytes engaged by bispecific antibodies. We show that the gene C22orf46 facilitates pro-survival signals and that tumor cells devoid of C22orf46 expression exhibit increased susceptibility to T cell-induced apoptosis and stress by genotoxic agents. Although annotated as a non-coding gene, we demonstrate that C22orf46 encodes a nucleolar protein, hereafter referred to as "Tumor Apoptosis Associated Protein 1," up-regulated in lung cancer, which displays remote homologies to the BH domain containing Bcl-2 family of apoptosis regulators. Collectively, the findings establish TAAP1/C22orf46 as a pro-survival oncogene with implications to therapy.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/farmacologia
2.
EMBO Rep ; 21(12): e50155, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33063451

RESUMO

Tumor cells subvert immune surveillance by harnessing signals from immune checkpoints to acquire immune resistance. The protein PD-L1 is an important component in this process, and inhibition of PD-L1 elicits durable anti-tumor responses in a broad spectrum of cancers. However, immune checkpoint inhibition that target known pathways is not universally effective. A better understanding of the genetic repertoire underlying these processes is necessary to expand our knowledge in tumor immunity and to facilitate identification of alternative targets. Here, we present a CRISPR/Cas9 screen in human cancer cells to identify genes that confer tumors with the ability to evade the cytotoxic effects of the immune system. We show that the transcriptional regulator MLLT6 (AF17) is required for efficient PD-L1 protein expression and cell surface presentation in cancer cells. MLLT6 depletion alleviates suppression of CD8+ cytotoxic T cell-mediated cytolysis. Furthermore, cancer cells lacking MLLT6 exhibit impaired STAT1 signaling and are insensitive to interferon-γ-induced stimulation of IDO1, GBP5, CD74, and MHC class II genes. Collectively, our findings establish MLLT6 as a regulator of oncogenic and interferon-γ-associated immune resistance.


Assuntos
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/genética , Proteínas de Ligação a DNA , Humanos , Interferon gama/genética , Proteínas de Neoplasias , Neoplasias/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...