Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 5(3): 4119-4129, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35372797

RESUMO

Layered nanomaterials fascinate researchers for their mechanical, barrier, optical, and transport properties. Nacre is a biological example thereof, combining excellent mechanical properties by aligned submicron inorganic platelets and nanoscale proteinic interlayers. Mimicking nacre with advanced nanosheets requires ultraconfined organic layers aimed at nacre-like high reinforcement fractions. We describe inorganic/polymer hybrid Bragg stacks with one or two fluorohectorite clay layers alternating with one or two poly(ethylene glycol) layers. As indicated by X-ray diffraction, perfect one-dimensional crystallinity allows for homogeneous single-phase materials with up to a 84% clay volume fraction. Brillouin light spectroscopy allows the exploration of ultimate mechanical moduli without disturbance by flaws, suggesting an unprecedentedly high Young's modulus of 162 GPa along the aligned clays, indicating almost ideal reinforcement under these conditions. Importantly, low heat conductivity is observed across films, κ⊥ = 0.11-0.15 W m-1 K-1, with a high anisotropy of κ∥/κ⊥ = 28-33. The macroscopic mechanical properties show ductile-to-brittle change with an increase in the clay volume fraction from 54% to 70%. Conceptually, this work reveals the ultimate elastic and thermal properties of aligned layered clay nanocomposites in flaw-tolerant conditions.

2.
ACS Appl Mater Interfaces ; 13(40): 48101-48109, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34585569

RESUMO

Systematic studies on the influence of crystalline vs disordered nanocomposite structures on barrier properties and water vapor sensitivity are scarce as it is difficult to switch between the two morphologies without changing other critical parameters. By combining water-soluble poly(vinyl alcohol) (PVOH) and ultrahigh aspect ratio synthetic sodium fluorohectorite (Hec) as filler, we were able to fabricate nanocomposites from a single nematic aqueous suspension by slot die coating that, depending on the drying temperature, forms different desired morphologies. Increasing the drying temperature from 20 to 50 °C for the same formulation triggers phase segregation and disordered nanocomposites are obtained, while at room temperature, one-dimensional (1D) crystalline, intercalated hybrid Bragg Stacks form. The onset of swelling of the crystalline morphology is pushed to significantly higher relative humidity (RH). This disorder-order transition renders PVOH/Hec a promising barrier material at RH of up to 65%, which is relevant for food packaging. The oxygen permeability (OP) of the 1D crystalline PVOH/Hec is an order of magnitude lower compared to the OP of the disordered nanocomposite at this elevated RH (OP = 0.007 cm3 µm m-2 day-1 bar-1 cf. OP = 0.047 cm3 µm m-2 day-1 bar-1 at 23 °C and 65% RH).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...