Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 18(4): 2777-2782, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31572525

RESUMO

Atrial fibrillation (AF) is an arrhythmia caused by disorganized electrical activity in the atria, and it is an important cause of mortality and morbidity. There is a limited data about Rho/Rho-kinase (ROCK) pathway contribute to AF development. The aim of the present study was to elucidate leukocyte RHO/ROCK gene expressions in patients with non-valvular AF (NVAF). A total of 37 NVAF patients and 47 age and sex-matched controls were included in this study. mRNA was extracted from leukocytes, and real-time polymerase chain reaction was used for gene expression analysis. A marked increase in ROCK1 and ROCK2 gene expressions in patients with NVAF was observed (P<0.0001). The present study detected significant elevations in RHOBTB2, RND3 (RHOE), RHOC, RHOG, RHOH, RAC3, RHOB, RHOD, RHOV, RHOBTB1, RND2, RND1 and RHOJ gene expressions (P<0.01). However, there were marked decreases in CDC42, RAC2, and RHOQ gene expressions in patients with NVAF. No significant modifications were seen in the other Rho GTPase proteins RHOA, RAC1, RHOF, RHOU and RHOBTB3. To the best of our knowledge, the present study is the first to provide data that gene expression of leukocyte RHO/ROCK may contribute to the NVAF pathogenesis through activated leukocytes, which promotes the immune or inflammatory cascade.

2.
Sci Rep ; 7(1): 9272, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839241

RESUMO

Atrial fibrillation (AF) is the most common arrhythmia in clinical practice and is a major cause of morbidity and mortality. The upregulation of TRP channels is believed to mediate the progression of electrical remodelling and the arrhythmogenesis of the diseased heart. However, there is limited data about the contribution of the TRP channels to development of AF. The aim of this study was to investigate leukocyte TRP channels gene expressions in non-valvular atrial fibrillation (NVAF) patients. The study included 47 NVAF patients and 47 sex and age matched controls. mRNA was extracted from blood samples, and real-time polymerase chain reaction was performed for gene expressions by using a dynamic array system. Low levels of TRP channel expressions in the controls were markedly potentiated in NVAF group. We observed marked increases in MCOLN1 (TRPML1), MCOLN2 (TRPML2), MCOLN3 (TRPML3), TRPA1, TRPM1, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV1, TRPV2, TRPV3, TRPV4, TRPV5, TRPV6, and PKD2 (TRPP2) gene expressions in NVAF patients (P < 0.05). However, there was no change in PKD1 (TRPP1) gene expression. This is the first study to provide evidence that elevated gene expressions of TRP channels are associated with the pathogenesis of NVAF.


Assuntos
Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Expressão Gênica , Leucócitos/metabolismo , Canais de Potencial de Receptor Transitório/genética , Idoso , Fibrilação Atrial/diagnóstico , Biomarcadores , Comorbidade , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...