RESUMO
BACKGROUND: Drug repurposing has been an interesting and cost-effective approach, especially for neglected diseases, such as Chagas disease. METHODS: In this work, we studied the activity of the antidepressant drug sertraline against Trypanosoma cruzi trypomastigotes and intracellular amastigotes of the Y and Tulahuen strains, and investigated its action mode using cell biology and in silico approaches. RESULTS: Sertraline demonstrated in vitro efficacy against intracellular amastigotes of both T. cruzi strains inside different host cells, including cardiomyocytes, with IC50 values between 1 to 10 µM, and activity against bloodstream trypomastigotes, with IC50 of 14 µM. Considering the mammalian cytotoxicity, the drug resulted in a selectivity index of 17.8. Sertraline induced a change in the mitochondrial integrity of T. cruzi, resulting in a decrease in ATP levels, but not affecting reactive oxygen levels or plasma membrane permeability. In silico approaches using chemogenomic target fishing, homology modeling and molecular docking suggested the enzyme isocitrate dehydrogenase 2 of T. cruzi (TcIDH2) as a potential target for sertraline. CONCLUSIONS: The present study demonstrated that sertraline had a lethal effect on different forms and strains of T. cruzi, by affecting the bioenergetic metabolism of the parasite. These findings provide a starting point for future experimental assays and may contribute to the development of new compounds.
RESUMO
Chagas disease has spread throughout the world mainly because of the migration of infected individuals. In Brazil, only benznidazole (Bnz) is used; however, it is toxic and not active in the chronic phase, and cases of resistance are described. This work aimed at the synthesis and the trypanocidal evaluation in vitro and in vivo of six new Bnz analogues (3-8). They were designed by exploring the bioisosteric substitution between the amide group contained in Bnz and the 1,2,3-triazole ring. All the compounds were synthesized in good yields. With the exception of compound 7, the in vitro biological evaluation shows that all Bnz analogues were active against the amastigote form, whereas only compounds 3, 4, 5, and 8 were active against trypomastigote. Compounds 4 and 5 showed the most promising activities in vitro against the form of trypomastigote, being more active than Bnz. In vivo evaluation of compounds, 3-8 showed lower potency and higher toxicity than Bnz. Although the 1,2,3-triazole ring has been described in the literature as an amide bioisostere, its substitution here has reduced the activity of the compounds and made them more toxic. Thus, further molecular optimization could provide novel therapeutic agents for Chagas' disease.
Assuntos
Doença de Chagas/tratamento farmacológico , Nitroimidazóis/química , Triazóis/química , Tripanossomicidas/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/veterinária , Masculino , Camundongos , Nifurtimox/química , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacosRESUMO
American trypanosomiasis or Chagas disease (CD) is a vector borne pathology caused by the parasite Trypanosoma cruzi (T. cruzi), which remains a serious global health problem. The current available treatment for CD is limited to two nitroderivatives with limited efficacy and several side effects. The rational design of ergosterol synthetic route inhibitors (e.g. CYP51 inhibitors) represents a promising strategy for fungi and trypanosomatids, exhibiting excellent anti-T.cruzi activity in pre-clinical assays. In the present work, we evaluate through different approaches (molecular docking, structure activity relationships, CYP51 inhibitory assay, and phenotypic screenings in vitro and in vivo) the potency and selectivity of a novel CYP51 inhibitor (compound 1) and its analogues against T.cruzi infection. Regarding anti-parasitic effect, compound 1 was active in vitro with EC50 3.86 and 4.00⯵M upon intracellular (Tulahuen strain) and bloodstream forms (Y strain), respectively. In vivo assays showed that compound 1 reduced in 43% the parasitemia peak but, unfortunately failed to promote animal survival. In order to promote an enhancement at the potency and pharmacological properties, 17 new analogues were purchased and screened in vitro. Our findings demonstrated that five compounds were active against intracellular forms, highlighting compounds 1e and 1f, with EC50 2.20 and 2.70⯵M, respectively, and selectivity indices (SI)â¯=â¯50 and 36, respectively. Against bloodstream trypomastigotes, compound 1f reached an EC50 value of 20.62⯵M, in a similar range to Benznidazole, but with low SI (3). Although improved the solubility of compound 1, the analogue 1f did not enhance the potency in vitro neither promote better in vivo efficacy against mouse model of acute T.cruzi infection arguing for the synthesis of novel pyrazolo[3,4-e][1,4]thiazepin derivatives aiming to contribute for alternative therapies for CD.
Assuntos
Inibidores de 14-alfa Desmetilase/química , Pirazolonas/química , Tiazepinas/química , Inibidores de 14-alfa Desmetilase/uso terapêutico , Animais , Doença de Chagas/tratamento farmacológico , Camundongos , Simulação de Acoplamento Molecular , Parasitemia/tratamento farmacológico , Pirazolonas/farmacologia , Relação Estrutura-Atividade , Taxa de Sobrevida , Tiazepinas/farmacologia , Trypanosoma cruzi/efeitos dos fármacosRESUMO
Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite's DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM). When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13-25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment). Light microscopy examination early (6 and 24h) post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition--with the appearance of 'tethered' parasites--malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results show that Cipro derivatives improved the survival of mice acutely infected with T. gondii and inhibited parasite replication early in the first cycle of infection in vitro, highlighting their therapeutic potential for the treatment of toxoplasmosis.
Assuntos
Ciprofloxacina/agonistas , Ésteres/administração & dosagem , Toxoplasma/efeitos dos fármacos , Toxoplasmose Animal/tratamento farmacológico , Animais , Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Divisão Celular/efeitos dos fármacos , Ciprofloxacina/administração & dosagem , Ciprofloxacina/farmacologia , Ésteres/farmacologia , Feminino , Camundongos , Análise de Sobrevida , Toxoplasma/fisiologia , Toxoplasmose Animal/parasitologiaRESUMO
Chagas disease (CD), a neglected tropical disease caused by Trypanosoma cruzi, remains a serious public health problem in several Latin American countries. The available chemotherapies for CD have limited efficacy and exhibit undesirable side effects. Aromatic diamidines and arylimidamides (AIAs) have shown broad-spectrum activity against intracellular parasites, including T. cruzi. Therefore, our aim was to evaluate the biological activity of eight novel AIAs (16DAP002, 16SAB079, 18SAB075, 23SMB022, 23SMB026, 23SMB054, 26SMB070, and 27SMB009) against experimental models of T. cruzi infection in vitro and in vivo. Our data show that none of the compounds induced a loss of cellular viability up to 32 µM. Two AIAs, 18SAB075 and 16DAP002, exhibited good in vitro activity against different parasite strains (Y and Tulahuen) and against the two relevant forms of the parasite for mammalian hosts. Due to the excellent selective indexes of 18SAB075, this AIA was moved to in vivo tests for acute toxicity and parasite efficacy; nontoxic doses (no-observed-adverse-effect level [NOAEL], 50 mg/kg) were employed in the tests for parasite efficacy. In experimental models of acute T. cruzi infection, 18SAB075 reduced parasitemia levels only up to 50% and led to 40% protection against mortality (at 5 mg/kg of body weight), being less effective than the reference drug, benznidazole.
Assuntos
Amidinas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Amidinas/uso terapêutico , Amidinas/toxicidade , Animais , Sobrevivência Celular , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Galactosidases/metabolismo , Masculino , Camundongos , Nitroimidazóis/farmacologia , Nível de Efeito Adverso não Observado , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Cultura Primária de Células , Tripanossomicidas/uso terapêutico , Tripanossomicidas/toxicidadeRESUMO
In vitro and in vivo activities against Trypanosoma cruzi were evaluated for two sesquiterpene lactones: psilostachyin A and cynaropicrin. Cynaropicrin had previously been shown to potently inhibit African trypanosomes in vivo, and psilostachyin A had been reported to show in vivo effects against T. cruzi, albeit in another test design. In vitro data showed that cynaropicrin was more effective than psilostachyin A. Ultrastructural alterations induced by cynaropicrin included shedding events, detachment of large portions of the plasma membrane, and vesicular bodies and large vacuoles containing membranous structures, suggestive of parasite autophagy. Acute toxicity studies showed that one of two mice died at a cynaropicrin dose of 400 mg/kg of body weight given intraperitoneally (i.p.). Although no major plasma biochemical alterations could be detected, histopathology demonstrated that the liver was the most affected organ in cynaropicrin-treated animals. Although cynaropicrin was as effective as benznidazole against trypomastigotes in vitro, the treatment (once or twice a day) of T. cruzi-infected mice (up to 50 mg/kg/day cynaropicrin) did not suppress parasitemia or protect against mortality induced by the Y and Colombiana strains. Psilostachyin A (0.5 to 50 mg/kg/day given once a day) was not effective in the acute model of T. cruzi infection (Y strain), reaching 100% animal mortality. Our data demonstrate that although it is very promising against African trypanosomes, cynaropicrin does not show efficacy compared to benznidazole in acute mouse models of T. cruzi infection.
Assuntos
Doença de Chagas/tratamento farmacológico , Fígado/efeitos dos fármacos , Nitroimidazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Doença de Chagas/mortalidade , Doença de Chagas/parasitologia , Lactonas/farmacologia , Fígado/parasitologia , Fígado/patologia , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Testes de Sensibilidade Parasitária , Sesquiterpenos/farmacologia , Análise de Sobrevida , Falha de Tratamento , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/ultraestrutura , Vacúolos/efeitos dos fármacos , Vacúolos/ultraestruturaRESUMO
Chagas disease affects more than 10 million people worldwide, and yet, as it has historically been known as a disease of the poor, it remains highly neglected. Two currently available drugs exhibit severe toxicity and low effectiveness, especially in the chronic phase, while new drug discovery has been halted for years as a result of a lack of interest from pharmaceutical companies. Although attempts to repurpose the antifungal drugs posaconazole and ravuconazole (inhibitors of fungal sterol 14α-demethylase [CYP51]) are finally in progress, development of cheaper and more efficient, preferably Trypanosoma cruzi-specific, chemotherapies would be highly advantageous. We have recently reported that the experimental T. cruzi CYP51 inhibitor VNI cures with 100% survival and 100% parasitological clearance both acute and chronic murine infections with the Tulahuen strain of T. cruzi. In this work, we further explored the potential of VNI by assaying nitro-derivative-resistant T. cruzi strains, Y and Colombiana, in highly stringent protocols of acute infection. The data show high antiparasitic efficacy of VNI and its derivative (VNI/VNF) against both forms of T. cruzi that are relevant for mammalian host infection (bloodstream and amastigotes), with the in vivo potency, at 25 mg/kg twice a day (b.i.d.), similar to that of benznidazole (100 mg/kg/day). Transmission electron microscopy and reverse mutation tests were performed to explore cellular ultrastructural and mutagenic aspects of VNI, respectively. No mutagenic potential could be seen by the Ames test at up to 3.5 µM, and the main ultrastructural damage induced by VNI in T. cruzi was related to Golgi apparatus and endoplasmic reticulum organization, with membrane blebs presenting an autophagic phenotype. Thus, these preliminary studies confirm VNI as a very promising trypanocidal drug candidate for Chagas disease therapy.
Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Doença de Chagas/tratamento farmacológico , Imidazóis/farmacologia , Oxidiazóis/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Esterol 14-Desmetilase/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Inibidores de 14-alfa Desmetilase/química , Animais , Doença de Chagas/mortalidade , Doença de Chagas/parasitologia , Resistência a Medicamentos/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/ultraestrutura , Imidazóis/química , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Nitroimidazóis/farmacologia , Oxidiazóis/química , Proteínas de Protozoários/metabolismo , Tiazóis/farmacologia , Triazóis/farmacologia , Tripanossomicidas/química , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/ultraestruturaRESUMO
Chagas disease is caused by infection with the intracellular protozoan parasite Trypanosoma cruzi. At present, nifurtimox and benznidazole, both compounds developed empirically over four decades ago, represent the chemotherapeutic arsenal for treating this highly neglected disease. However, both drugs present variable efficacy depending on the geographical area and the occurrence of natural resistance, and are poorly effective against the later chronic stage. As a part of a search for new therapeutic opportunities to treat chagasic patients, pre-clinical studies were performed to characterize the activity of a novel arylimidamide (AIA--DB1831 (hydrochloride salt) and DB1965 (mesylate salt)) against T. cruzi. These AIAs displayed a high trypanocidal effect in vitro against both relevant forms in mammalian hosts, exhibiting a high selectivity index and a very high efficacy (IC(50) value/48 h of 5-40 nM) against intracellular parasites. DB1965 shows high activity in vivo in acute experimental models (mouse) of T. cruzi, showing a similar effect to benznidazole (Bz) when compared under a scheme of 10 daily consecutive doses with 12.5 mg/kg. Although no parasitological cure was observed after treating with 20 daily consecutive doses, a combined dosage of DB1965 (5 mg/kg) with Bz (50 mg/kg) resulted in parasitaemia clearance and 100% animal survival. In summary, our present data confirmed that aryimidamides represent promising new chemical entities against T. cruzi in therapeutic schemes using the AIA alone or in combination with other drugs, like benznidazole.
Assuntos
Amidas/uso terapêutico , Amidinas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Mesilatos/uso terapêutico , Pirimidinas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Amidas/efeitos adversos , Amidas/farmacologia , Amidinas/efeitos adversos , Amidinas/farmacologia , Animais , Antiprotozoários/efeitos adversos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Células Cultivadas , Doença de Chagas/mortalidade , Doença de Chagas/patologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Masculino , Mesilatos/efeitos adversos , Mesilatos/farmacologia , Camundongos , Modelos Biológicos , Nível de Efeito Adverso não Observado , Pirimidinas/efeitos adversos , Pirimidinas/farmacologia , Resultado do Tratamento , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/fisiologiaRESUMO
The present study aimed to determine the in vitro biological efficacy and selectivity of 7 novel AIAs upon bloodstream trypomastigotes and intracellular amastigotes of Trypanosoma cruzi. The biological activity of these aromatic compounds was assayed for 48 and 24 h against intracellular parasites and bloodstream forms of T. cruzi (Y strain), respectively. Additional assays were also performed to determine their potential use in blood banks by treating the bloodstream parasites with the compounds diluted in mouse blood for 24 h at 4°C. Toxicity against mammalian cells was evaluated using primary cultures of cardiac cells incubated for 24 and 48 h with the AIAs and then cellular death rates were determined by MTT colorimetric assays. Our data demonstrated the outstanding trypanocidal effect of AIAs against T. cruzi, especially DB1853, DB1862, DB1867 and DB1868, giving IC50 values ranging between 16 and 70 nanomolar against both parasite forms. All AIAs presented superior efficacy to benznidazole and some, such as DB1868, also demonstrated promising activity as a candidate agent for blood prophylaxis. The excellent anti-trypanosomal efficacy of these novel AIAs against T. cruzi stimulates further in vivo studies and justifies the screening of new analogues with the goal of establishing a useful alternative therapy for Chagas disease.
Assuntos
Amidas/farmacologia , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Amidas/química , Amidas/isolamento & purificação , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Doença de Chagas/parasitologia , Concentração Inibidora 50 , Camundongos , Miócitos Cardíacos , Nitroimidazóis/farmacologia , Testes de Sensibilidade Parasitária , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificaçãoRESUMO
OBJECTIVES: As part of a search for new therapeutic opportunities to treat chagasic patients, in vitro efficacy studies were performed to characterize the activity of five novel arylimidamides (AIAs) against Trypanosoma cruzi. METHODS: The trypanocidal effect against T. cruzi was evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by MTT assays against mouse cardiomyocytes. RESULTS: Our data demonstrated the trypanocidal efficacy of these new compounds against bloodstream trypomastigotes and intracellular amastigotes, exhibiting IC50 values ranging from 0.015 to 2.5 and 0.02 to0.2 µM, respectively. One of the compounds, DB745B, was also highly active against a broad panel of isolates, including those naturally resistant to benznidazole. DB745B showed higher in vitro efficacy than the reference drugs used to treat patients (benznidazole IC50=â12.94 µM) and to prevent blood bank infection (gentian violet IC50=â30.6 µM). CONCLUSIONS: AIAs represent promising new chemical entities against T. cruzi and are also potential trypanocidal agents to prevent transfusion-associated Chagas' disease.
Assuntos
Amidinas/farmacologia , Antiprotozoários/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Amidinas/toxicidade , Animais , Antiprotozoários/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Concentração Inibidora 50 , Camundongos , Microscopia , Miócitos Cardíacos/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Sais de Tetrazólio/metabolismo , Tiazóis/metabolismoRESUMO
Trypanosoma cruzi is a parasite that causes Chagas disease, which affects millions of individuals in endemic areas of Latin America. One hundred years after the discovery of Chagas disease, it is still considered a neglected illness because the available drugs are unsatisfactory. Aromatic compounds represent an important class of DNA minor groove-binding ligands that exhibit potent antimicrobial activity. This study focused on the in vitro activity of 10 aromatic dicationic compounds against bloodstream trypomastigotes and intracellular forms of T. cruzi. Our data demonstrated that these compounds display trypanocidal effects against both forms of the parasite and that seven out of the 10 compounds presented higher anti-parasitic activity against intracellular parasites compared with the bloodstream forms. Additional assays to determine the potential toxicity to mammalian cells showed that the majority of the dicationic compounds did not considerably decrease cellular viability. Fluorescent microscopy analysis demonstrated that although all compounds were localised to a greater extent within the kinetoplast than the nucleus, no correlation could be found between compound activity and kDNA accumulation. The present results stimulate further investigations of this class of compounds for the rational design of new chemotherapeutic agents for Chagas disease.
Assuntos
Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Concentração Inibidora 50 , Camundongos , Microscopia de Fluorescência , Miócitos Cardíacos/parasitologia , Testes de Sensibilidade Parasitária , Fatores de TempoRESUMO
Chagas disease remains a serious public health problem in several Latin American countries. New chemotherapy is urgently needed since current drugs are limited in efficacy and exhibit undesirable side effects. Aromatic diamidines and analogs are well known anti-parasitic agents and in this study, we have evaluated the in vitro trypanocidal effect of several different heterocyclic cationic compounds, including diamidines (DB1195, DB1196 and DB1345), a monoamidine (DB824), an arylimidamide (DB613A) and a guanylhydrazone (DB1080) against amastigotes and bloodstream trypomastigotes of Trypanosoma cruzi, the etiological agent of Chagas disease. Our present findings showed that all compounds exerted, at low-micromolar doses, a trypanocidal effect upon both intracellular parasites and bloodstream trypomastigotes of T. cruzi. The activity of DB1195, DB1345, DB824 and DB1080 against bloodstream forms was reduced when these compounds were assayed in the presence of mouse blood possibly due to their association with plasma constituents and/or due to metabolic instability of the compounds. However, trypanocidal effects of DB613A and DB1196 were not affected by plasma constituents, suggesting their potential application in the prophylaxis of banked blood. In addition, potency and selectivity of DB613A, towards intracellular parasites, corroborate previous results that demonstrated the highly promising activity of arylimidamides against this parasite, which justify further studies in experimental models of T. cruzi infection.
Assuntos
Amidinas/farmacologia , Compostos Heterocíclicos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária , Células VeroRESUMO
Aromatic diamidines are DNA minor groove-binding ligands that display excellent antimicrobial activity against fungi, bacteria, and protozoa. Due to the currently unsatisfactory chemotherapy for Chagas' disease and in view of our previous reports regarding the effect of diamidines and analogues against both in vitro and in vivo Trypanosoma cruzi infection, this study evaluated the effects of a diarylthiophene diamidine (DB1362) against both amastigotes and bloodstream trypomastigotes of T. cruzi, the etiological agent of Chagas' disease. The data show the potent in vitro activity of DB1362 against both parasite forms that are relevant for mammalian infection at doses which do not exhibit cytotoxicity. Ultrastructural analysis and flow cytometry studies show striking alterations in the nuclei and mitochondria of the bloodstream parasites. In vivo studies were performed at two different drug concentrations (25 and 50 mg/kg/day) using a 2-day or a 10-day regimen. The best results were obtained when acutely infected mice were treated with two doses at the lower concentration, resulting in 100% survival, compared to the infected and untreated mice. Although it did not display higher efficacy than benznidazole, DB1362 reduced both cardiac parasitism and inflammation, and in addition, it protected against the cardiac alterations (determined by measurements) common in T. cruzi infection. These results support further investigation of diamidines and related compounds as potential agents against Chagas' disease.