Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Eur J Med Chem ; 274: 116563, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843586

RESUMO

Chronic myeloid leukemia (CML) is a global issue and the available drugs such as tyrosine kinase inhibitors (TKIs) comprise various toxic effects as well as resistance and cross-resistance. Therefore, novel molecules targeting specific enzymes may unravel a new direction in antileukemic drug discovery. In this context, targeting gelatinases (MMP-2 and MMP-9) can be an alternative option for the development of novel molecules effective against CML. In this article, some D(-)glutamine derivatives were synthesized and evaluated through cell-based antileukemic assays and tested against gelatinases. The lead compounds, i.e., benzyl analogs exerted the most promising antileukemic potential showing nontoxicity in normal cell line including efficacious gelatinase inhibition. Both these lead molecules yielded effective apoptosis and displayed marked reductions in MMP-2 expression in the K562 cell line. Not only that, but both of them also revealed effective antiangiogenic efficacy. Importantly, the most potent MMP-2 inhibitor, i.e., benzyl derivative of p-tosyl D(-)glutamine disclosed stable binding interaction at the MMP-2 active site correlating with the highly effective MMP-2 inhibitory activity. Therefore, such D(-)glutamine derivatives might be explored further as promising MMP-2 inhibitors with efficacious antileukemic profiles for the treatment of CML in the future.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Glutamina , Leucemia Mielogênica Crônica BCR-ABL Positiva , Metaloproteinase 2 da Matriz , Inibidores de Metaloproteinases de Matriz , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Metaloproteinase 2 da Matriz/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Glutamina/química , Glutamina/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Células K562 , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Apoptose/efeitos dos fármacos
2.
Free Radic Res ; : 1-18, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38810269

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG), a bioactive polyphenol of green tea, has chemo-preventive effects against various cancer cells. Nanoparticles (NPs) carrying different ligands are able to specifically interact with their receptors on different cancer cells that can provide effective release of cytotoxic drugs. In the present study, we have prepared EGCG entrapped NPs using PLGA (poly(d,l-lactide-co-glycolide)). Polyethylene glycol (PEG) and folic acid (FA) via double emulsion solvent evaporation (DESE) method obtained PLGA-EGCG (P-E), PLGA-PEG-EGCG (PP-E), and PLGA-PEG-FA-EGCG (PPF-E). Nanoformulations had been characterized with 1H NMR and FT-IR techniques, AFM, and DLS. PPF-E NPs showed an average size of 220 nm. Analysis of zeta potential confirmed the stability of NPs. HCT-116, HT-29, HCT-15, and HEK 293 cells were treated with both the prepared NPs and free EGCG (0-140 µM). Result showed PPF-E NPs had improved delivery, uptake and cell cytotoxicity toward human folic acid receptor-positive (FR+) colorectal cancer (CRC) cells as mainly on HCT-116 compared to HT-29, but not on the folic acid-negative cells (FR-) as HCT-15. PPF-E NPs enhanced intracellular reactive oxygen species (ROS) level in absence of N-acetyl-l-cysteine (NAC), elevated DNA fragmentation level, and increased apoptotic cell death at higher doses compared to other two NPs and free EGCG. In conclusion, PPF-E NPs exerted greater efficacy than PP-E, P-E, and free EGCG in HCT-116 cells.

3.
Arch Toxicol ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795134

RESUMO

The exploration of natural products as potential agents for cancer treatment has garnered significant attention in recent years. In this comprehensive review, we delve into the diverse array of natural compounds, including alkaloids, carbohydrates, flavonoids, lignans, polyketides, saponins, tannins, and terpenoids, highlighting their emerging roles in cancer therapy. These compounds, derived from various botanical sources, exhibit a wide range of mechanisms of action, targeting critical pathways involved in cancer progression such as cell proliferation, apoptosis, angiogenesis, and metastasis. Through a meticulous examination of preclinical and clinical studies, we provide insights into the therapeutic potential of these natural products across different cancer types. Furthermore, we discuss the advantages and challenges associated with their use in cancer treatment, emphasizing the need for further research to optimize their efficacy, pharmacokinetics, and delivery methods. Overall, this review underscores the importance of natural products in advancing cancer therapeutics and paves the way for future investigations into their clinical applications.

4.
World J Hepatol ; 16(4): 566-600, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38689743

RESUMO

The unique physicochemical properties inherent to nanoscale materials have unveiled numerous potential applications, spanning beyond the pharmaceutical and medical sectors into various consumer industries like food and cosmetics. Consequently, humans encounter nanomaterials through diverse exposure routes, giving rise to potential health considerations. Noteworthy among these materials are silica and specific metallic nanoparticles, extensively utilized in consumer products, which have garnered substantial attention due to their propensity to accumulate and induce adverse effects in the liver. This review paper aims to provide an exhaustive examination of the molecular mechanisms underpinning nanomaterial-induced hepatotoxicity, drawing insights from both in vitro and in vivo studies. Primarily, the most frequently observed manifestations of toxicity following the exposure of cells or animal models to various nanomaterials involve the initiation of oxidative stress and inflammation. Additionally, we delve into the existing in vitro models employed for evaluating the hepatotoxic effects of nanomaterials, emphasizing the persistent endeavors to advance and bolster the reliability of these models for nanotoxicology research.

5.
Biol Open ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602383

RESUMO

Chronic gastritis is one of the major symptoms of gastro-duodenal disorders typically induced by Helicobacter pylori (H. pylori). To date, no suitable model is available to study pathophysiology and therapeutic measures accurately. Here, we have presented a successful surgical infection model of H. pylori-induced gastritis in C57BL/6 mice that resembles features similar to human infection. The proposed model does not require any preparatory treatment other than surgical intervention. C57BL/6 mice were injected with wild-type SS1 (Sydney strain 1, reference strain) directly into the stomach. Seven days post infection, infected animals showed alterations in cytokine responses along with inflammatory cell infiltration in the lamina propria, depicting a prominent inflammatory response due to infection. To understand the immunogenicity and protective efficacy, the mice were immunized with outer membrane vesicles (OMVs) isolated from an indigenous strain with putative virulence factors of H. pylori [A61C (1), cag+/vacA s1m1]. In contrast to the non-immunized cohort, the OMV-immunized cohort showed a gradual increase in serum immunoglobulin(s) levels on the 35th day after the first immunization. This conferred protective immunity against subsequent challenge with the reference strain (SS1). Direct inoculation of H. pylori into the stomach influenced infection in a short time and, more importantly, in a dose-dependent manner, indicating the usefulness of the developed model for pathophysiology, therapeutic and prophylactic studies.

6.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38423128

RESUMO

In an endeavour to improve the anti-cancer activity of betulinic acid (BA), a series of C-30 derivatives were envisaged and synthesized with a novel synthetic approach. All the derivatives were evaluated for cytotoxic activity by MTT assay against six different human cancer cell lines: prostate (PC3), lung (A549), human hepatocellular carcinoma (HepG2), human leukemia (Molt-4), pancreatic (Panc-1) and breast (MCF-7). The data revealed that compound 16 was observed most promising cytotoxic agent with IC50 values of 7.43 µM, 9.1 µM, and 9.64 µM against A549, MCF-7, and PC3 cancer cell lines respectively. A further mechanistic study confirmed compound 16 showed significant cell death by arresting the cell cycle in the G1 phase and inducing apoptosis in A549 cells.Communicated by Ramaswamy H. Sarma.

7.
ACS Omega ; 8(40): 36893-36905, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37841142

RESUMO

Nanoparticles (NPs) are encapsulating agents that exist in the nanometer range. They can be classified into different classes based on their properties, shapes, or sizes. Metal NPs, fullerenes, polymeric NPs, ceramic NPs, and luminescent nanoporous hybrid materials are only a few examples. This study explored the anticancer potential of quercetin and 5-fluorouracil-encapsulated chitosan nanoparticles (CS-5-FU-QCT NPs). The nanoparticles were prepared by ionic gelation, and their efficacy and mechanism of action were examined. CS-5-FU-QCT NPs were characterized using dynamic light scattering (DLS), atomic force microscopy (AFM), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FTIR); cytotoxicity was analyzed using an MTT assay. Cells were treated with CS-5-FU-QCT NPs and incubated for 12, 24, and 36 h, and apoptosis analysis (using Annexin V/FITC), cell-cycle analysis, Western blotting, and confocal microscopic analysis were performed. Biophysical analysis revealed that the CS-5-FU-QCT NPs fall in the range of 300-400 nm with a near-spherical shape. The in vitro drug release profile indicates sustained release of drugs over a period of about 36 h. The cytotoxicity of CS-5-FU-QCT NPs was more prominent in HCT116 cells than in other cancer cells. This particular nanoformulation caused G0/G1 phase cell-cycle arrest in HCT116 cells and induced intracellular ROS generation, thereby causing apoptosis. It also downregulated Bcl2, cyclin D1, and Cdk4 and upregulated BAX, p53, and p21, causing cell-cycle arrest and apoptosis. In summary, CS-5-FU-QCT NPs hindered proliferation of HCT116 cells via ROS generation and altered the expression of key proteins in the p53/p21 axis and apoptotic machinery in a time-dependent manner.

8.
Biosci Rep ; 43(10)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37728565

RESUMO

Ferroptosis is a non-conventional cellular death caused by lipid peroxide induced iron deposition. Intracellular lipid accumulation followed by generation of lipid peroxides is an hallmark of non-alcoholic fatty liver disease (NAFLD). Melatonin (MLT) is an important pineal hormone with tremendous antioxidant and anti-inflammatory properties. Various studies targeted ferroptosis in different diseases using melatonin. However, none of them focused the intrinsic mechanism of MLT's action to counteract ferroptosis in NAFLD. Hence, the present study investigated the role of MLT in improvement of NAFLD-induced ferroptosis. HepG2 cells were treated with free fatty acids (FFAs) to induce in vitro NAFLD state and C57BL/6 mice were fed with high-fat diet (HFD) followed by MLT administration. The results indicated that MLT administration caused the recovery from both FFA- and HFD-induced ferroptotic state via increasing GSH and SOD level, decreasing lipid reactive oxygen species (ROS) and malondialdehyde (MDA) level, increasing Nrf2 and HO-1 level to defend cells against an oxidative environment. MLT also altered the expression of two key proteins GPX4 and SLC7A11 back to their normal levels, which would otherwise cause ferroptosis. MLT also protected against histopathological damage of both liver tissue and HepG2 cells as depicted by Oil Red O, HE staining and immunofluorescence microscopy. MLT also had control over pAMPKα as well as PPARγ and PPARα responsible for lipid homeostasis and lipogenesis. In brief, MLT exerted its multifaceted effect in FFA- and HFD-induced NAFLD by retrieving cellular oxidative environment, reducing lipogenesis and lipid peroxidation and modulating Nrf2/HO-1 and GPX4/SLC7A11 axis to combat ferroptosis.


Assuntos
Ferroptose , Melatonina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Oxirredução , Peróxidos Lipídicos
9.
Immunol Lett ; 263: 33-45, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734682

RESUMO

Diarrhoeagenic Escherichia coli (DEC) pathotypes are one of the major causative agents of diarrhoea induced childhood morbidity and mortality in developing countries. Licensed vaccines providing broad spectrum protection against DEC mediated infections are not available. Outer membrane vesicles (OMVs) are microvesicles released by gram-negative bacteria during the growth phase and contain multiple immunogenic proteins. Based on prevalence of infections, we have formulated a pentavalent outer-membrane vesicles (POMVs) based immunogen targeting five main pathotypes of DEC responsible for diarrhoeal diseases. Following isolation, OMVs from five DEC pathotypes were mixed in equal proportions to formulate POMVs and 10 µg of the immunogen was intraperitoneally administered to adult BALB/c mice. Three doses of POMVs induced significant humoral immune response against whole cell lysates (WCLs), outer membrane proteins (OMPs) and lipopolysaccharides (LPS) isolated from DEC pathotypes along with significant induction of cellular immune response in adult mice. Passive transfer of POMVs immunized adult mice sera protected neonatal mice significantly against DEC infections. Overall, this study finds POMVs to be immunogenic in conferring broad-spectrum passive protection to neonatal mice against five main DEC pathotypes. Altogether, these findings suggest that POMVs can be used as a potent vaccine candidate to ameliorate the DEC-mediated health burden.


Assuntos
Diarreia , Lipopolissacarídeos , Humanos , Adulto , Animais , Camundongos , Criança , Animais Recém-Nascidos , Imunidade Humoral , Escherichia coli
10.
Vaccine ; 41(41): 5994-6007, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37625993

RESUMO

Typhoid and emerging paratyphoid fever are a severe enteric disease worldwide with high morbidity and mortality. Licensed typhoid vaccines are in the market, but no paratyphoid vaccine is currently available. In the present study we developed a bivalent vaccine against Salmonella Typhi and Paratyphi A using a bacterial ghost platform. Bacterial ghost cells (BGs) are bacteria-derived cell membranes without cytoplasmic contents that retain their cellular morphology, including all cell surface features. Furthermore, BGs have inherent adjuvant properties that promote an enhanced humoral and cellular immune reaction to the target antigen. Sodium hydroxide was used to prepare ghost cells of Salmonella Typhi and Paratyphi A. The bacterial ghost cells were characterised using electron microscopy. Then BALB/c mice were immunized three times (0th, 14th and 28th day) with the bivalent typhoidal bacterial ghost cells. Haematological study of adult mice throughout immunization period reflected that the immunogen was safe to administer and does not affect the animals' health. After complete immunization, we found significant serum antibody titter against whole cell lysate, outer membrane protein and lipopolysaccharide of both bacteria, and cell-mediated immunity was observed in an ex-vivo experiment. CD4+, CD8a+ and CD19+ splenic cell populations were increased in immunized animals. Bivalent Typhoidal ghost cell immunized mice showed better survival, less bacterial colonization in systemic organs, and less inflammation and/or destruction of tissue in histopathological analysis than non-immunized control mice.Serum antibodies of immunized animals can significantly inhibit bacterial motility and mucin penetration ability with better killing properties against Salmonella Typhi and Paratyphi A. Furthermore, significant passive protection was observed through the adoptive transfer of serum antibody and lymphocytes of immunized animals to naïve animals after bacterial infection. In summary, Bivalent Typhoidal Bacterial Ghost cells (BTBGs) enhances immunogenic properties and serves as a safe and effective prevention strategy against Salmonella Typhi and Paratyphi A.


Assuntos
Febre Tifoide , Vacinas Tíficas-Paratíficas , Camundongos , Animais , Salmonella typhi , Salmonella paratyphi A , Camundongos Endogâmicos BALB C , Febre Tifoide/prevenção & controle
11.
Eur J Med Chem ; 258: 115594, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37429084

RESUMO

Histone deacetylase 8 (HDAC8) aberrantly deacetylates histone and non-histone proteins. These include structural maintenance of chromosome 3 (SMC3) cohesin protein, retinoic acid induced 1 (RAI1), p53, etc and thus, regulating diverse processes such as leukemic stem cell (LSC) transformation and maintenance. HDAC8, one of the crucial HDACs, affects the gene silencing process in solid and hematological cancer progressions especially on acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). A specific HDAC8 inhibitor PCI-34051 showed promising results against both T-cell lymphoma and AML. Here, we summarize the role of HDAC8 in hematological malignancies, especially in AML and ALL. This article also introduces the structure/function of HDAC8 and a special attention has been paid to address the HDAC8 enzyme selectivity issue in hematological cancer especially against AML and ALL.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Intervenção Coronária Percutânea , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas Repressoras
12.
Curr Comput Aided Drug Des ; 19(6): 465-475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733206

RESUMO

INTRODUCTION: Mental disorders are very serious complicated disorders. Schizophrenia is one of the most baffling mental disorders. The new series 7-(2-(benzo[d]thiazol-2- ylamino)ethoxy)-4-methyl-2H-chromen-2- synthesized in search of newer compounds for Schizophrenia. METHODS: Synthesis is done by refluxing in dry pyridine with various substituted 2-amino benzothiazoles derivatives (3a-3k) and 7-(2-Chloroethoxy)-4-methyl-2H-chromen-2-one (2). The molecular docking approach was used to screen these generated derivatives. Chem Bio Draw Ultra 12 was used to draw the compounds, which were then exposed to all potential conformations of compounds interacting with receptors. The Glide 7.6, Schrodinger 2017 Maestro 11.3 was used to achieve molecular docking. The Dopamine receptor 6CM4 serotonin 5TUD PDBs were acquired from the database of Brookhaven Protein. Using the OPLS 2005 force field, the ligand-protein hydrogen-bond network was acquired, along with the overall energy reduced. A glide score was used to rate the docking poses. RESULTS: The produced compounds have been identified with the use of analytical and spectral data. All of the produced substances were tested and analyzed for serotonin 5HT2 antagonistic and dopamine D2 activity, which can be considered as a measure of typical antipsychotic properties. CONCLUSION: Compounds 4b, 4c, 4e, 4g & 4i have demonstrated promising pharmacological action in preliminary studies. According to the preceding findings, compounds with electronwithdrawing substitutions, such as 4e & 4b, have a good atypical profile of antipsychotics.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/química , Simulação de Acoplamento Molecular , Serotonina , Benzotiazóis , Esquizofrenia/tratamento farmacológico , Relação Estrutura-Atividade
13.
Ir J Med Sci ; 192(2): 513-519, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35507215

RESUMO

BACKGROUND: Burnout among millennial medical students is an important health issue with a possibility of potential professional dissatisfaction. The reason for burnout is multifactorial. The gender of the medical student may play a significant role when choosing a residency specialty and making a career choice. Gender may also influence while establishing the burnout seen in students. Here we tested the association between burnout in medical students based on gender and residency specialty choice during COVID-19. METHODS: A multicentric cross-sectional study, using a questionnaire-based survey on the items related to gender, educational interest, status, residency aspiration, changes to career aspiration based on gender, and COVID-19 and an indigenous burnout assessment tool that was administered to all the medical students in the study. Reliability and validity of the tool were assessed, and the burnout was calculated for emotional exhaustion, personal achievement, and depersonalization domain. RESULTS: A total of 487 medical students (42.5% males, 57.2% females) completed the survey. A higher number of female participants felt that COVID-19 affected their energy levels (68.9%), interest in education (53.2%), and developed reservations about residency specialty of choice (46%); emotional and physical exhaustion (2.88 ± 0.69 & 2.34 ± 0.76) was higher than the male participants (3.16 ± 0.67 & 2.75 ± 0.85). CONCLUSION: More female participants experienced emotional distress, depersonalization or professional disengagement, and psychological and physical stress and exhaustion due to the COVID-19 pandemic. An important association observed in the study was between residency choice and burnout.


Assuntos
Esgotamento Profissional , COVID-19 , Estudantes de Medicina , Humanos , Masculino , Feminino , Estudos Transversais , Reprodutibilidade dos Testes , Pandemias , COVID-19/epidemiologia , Esgotamento Psicológico/epidemiologia , Esgotamento Profissional/epidemiologia , Esgotamento Profissional/psicologia , Inquéritos e Questionários
14.
Curr Comput Aided Drug Des ; 19(1): 24-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36221888

RESUMO

AIM: With several experimental studies establishing the role of Bacopa monnieri as an effective neurological medication, less focus has been employed to explore how effectively Bacopa monnieri brings about this property. The current work focuses on understanding the molecular interaction of the phytochemicals of the plant against different neurotrophic factors to explore their role and potential as potent anti-neurodegenerative drugs. BACKGROUND: Neurotrophins play a crucial role in the development and regulation of neurons. Alterations in the functioning of these Neurotrophins lead to several Neurodegenerative Disorders. Albeit engineered medications are accessible for the treatment of Neurodegenerative Disorders, due to their numerous side effects, it becomes imperative to formulate and synthesize novel drug candidates. OBJECTIVE: This study aims to investigate the potential of Bacopa monnieri phytochemicals as potent antineurodegenerative drugs by inspecting the interactions between Neurotrophins and target proteins. METHODS: The current study employs molecular docking and molecular dynamic simulation studies to examine the molecular interactions of phytochemicals with respective Neurotrophins. Further inspection of the screened phytochemicals was performed to analyze the ADME-Tox properties in order to classify the screened phytochemicals as potent drug candidates. RESULTS: The phytochemicals of Bacopa monnieri were subjected to in-silico docking with the respective Neurotrophins. Vitamin E, Benzene propanoic acid, 3,5-bis (1,1- dimethylethyl)- 4hydroxy-, methyl ester (BPA), Stigmasterol, and Nonacosane showed an excellent binding affinity with their respective Neurotrophins (BDNF, NT3, NT4, NGF). Moreover, the molecular dynamic simulation studies revealed that BPA and Stigmasterol show a very stable interaction with NT3 and NT4, respectively, suggesting their potential role as a drug candidate. Nonacosane exhibited a fluctuating binding behavior with NGF which can be accounted for by its long linear structure. ADME-Tox studies further confirmed the potency of these phytochemicals as BPA violated no factors and Vitamin E, Stigmasterol and Nonacosane violated 1 factor for Lipinski's rule. Moreover, their high human intestinal absorption and bioavailability score along with their classification as non-mutagen in the Ames test makes these compounds more reliable as potent antineurodegenerative drugs. CONCLUSION: Our study provides an in-silico approach toward understanding the anti-neurodegenerative property of Bacopa monnieri phytochemicals and establishes the role of four major phytochemicals which can be utilized as a replacement for synthetic drugs against several neurodegenerative disorders.


Assuntos
Bacopa , Doenças Neurodegenerativas , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bacopa/química , Bacopa/metabolismo , Simulação de Acoplamento Molecular , Estigmasterol/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Fatores de Crescimento Neural/metabolismo , Vitamina E , Desenvolvimento de Medicamentos
15.
Zootaxa ; 5138(4): 417-430, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36095827

RESUMO

We report the rediscovery of Oligodon melaneus 112 years after its original description and document the third, and only non-type, specimen for the species. The new specimen was found 267 km east of the type locality (Tindharia, West Bengal state) from Assam state, India. We designate a lectotype for the species, and provide an extended description of a freshly collected male specimen. Phylogenetic analyses of 16s and cytb mitochondrial genes provide support for O. melaneus being closely related to the widespread South Asian endemic O. arnensis.


Assuntos
Colubridae , Animais , Colubridae/genética , Genes Mitocondriais , Índia , Masculino , Filogenia
16.
Sci Rep ; 12(1): 8744, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610240

RESUMO

The role of RORγ as a transcription factor for Th17 cell differentiation and thereby regulation of IL-17 levels is well known. Increased RORγ expression along with IL-17A levels was observed in animal models, immune cells and BAL fluid of COPD patients. Increased IL-17A levels in severe COPD patients are positively correlated with decreased lung functions and increased severity symptoms and emphysema, supporting an urgency to develop novel therapies modulating IL-17 or RORγ for COPD treatment. We identified a potent RORγ inhibitor, PCCR-1 using hit to lead identification followed by extensive lead optimization by structure-activity relationship. PCCR-1 resulted in RORγ inhibition with a high degree of specificity in a biochemical assay, with > 300-fold selectivity over other isoforms of ROR. Our data suggest promising potency for IL-17A inhibition in human and canine PBMCs and mouse splenocytes with no significant impact on Th1 and Th2 cytokines. In vivo, PCCR-1 exhibited significant efficacy in the acute CS model with dose-dependent inhibition of the PD biomarkers that correlated well with the drug concentration in lung and BAL fluid, demonstrating an acceptable safety profile. This inhibitor effectively inhibited IL-17A release in whole blood and BALf samples from COPD patients. Overall, we identified a selective inhibitor of RORγ to pursue further development of novel scaffolds for COPD treatment.


Assuntos
Obstrução das Vias Respiratórias , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Obstrução das Vias Respiratórias/metabolismo , Animais , Cães , Humanos , Interleucina-17/metabolismo , Pulmão/metabolismo , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Células Th17
17.
Microb Pathog ; 164: 105418, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35101562

RESUMO

Candida albicans is a polymorphic, opportunistic pathogen, member of normal human microbiome causing candidiasis. It causes wide range of infections from superficial skin infections to life-threatening systemic infections. The pathogenicity in C. albicans attributes through several morphological characteristics and virulence factors. These morphological features are regulated by various molecules among which kinases are the most important. Several kinases and kinase signaling cascades play a well established role in Candidiasis. In this review we present an update on our current understanding of the pathogenicity attributes which is regulated by kinases as virulence factors.


Assuntos
Candida albicans , Candidíase , Candidíase/patologia , Proteínas Fúngicas/metabolismo , Humanos , Proteínas Quinases , Virulência , Fatores de Virulência/metabolismo
18.
J Biomol Struct Dyn ; 40(15): 6857-6867, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33625319

RESUMO

Human epidermal growth factor receptor2 (HER2) and Vascular endothelial growth factor receptor2 (VEGFR2) - a tyrosine kinase receptors play a key role in breast and stomach cancers. The overexpression of HER2 and VEGFR2 genes increases the number of HER2 and VEGFR2 in the cell which initiates breast and stomach cancer respectively. The phytochemicals from traditional medicinal herb Houttuynia cordata Thunb. are reported to possess anti-inflammatory and anti-cancer potential. However, isolation of phytochemicals from this herb is fraught with uncertainly and time-consuming. Here, a molecular docking approach provides probable binding affinities between the receptors and phytochemicals (ligands) which initiate the first step of anticancer drug discovery and development. In the present study, In-silico docking approaches were used to identify the top-hit phytochemicals from H. cordata as potential inhibitors for overexpressed HER2 (breast) and VEGFR2 (stomach) cancer genes. A total of 100 biologically active phytochemicals from H. cordata were screened and docked against the ligand-binding pocket of HER2 and VEGFR2 kinase domains. Docking results revealed only a few phytochemicals (molecules) which appropriately fit into the ligand-binding pocket with higher binding affinity than the natural ATP ligand. A competitive docking was used to ascertain the top-hit phytochemicals that bind perfectly to the ATP ligand-binding pocket. Among the top-hit phytochemicals docked from H. cordata, the ß-sitosterol and Quercetin showed highest binding affinity towards HER2 and VEGFR2 receptors using both hydrogen and hydrophobic interactions. This study confirmed ß-sitosterol and Quercetin as potential drug candidates against breast and stomach cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Houttuynia , Neoplasias Gástricas , Trifosfato de Adenosina , Genes Neoplásicos , Houttuynia/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Quercetina , Receptor ErbB-2 , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
19.
Mol Divers ; 26(1): 365-388, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33961167

RESUMO

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a massive viral disease outbreak of international concerns. The present study is mainly intended to identify the bioactive phytocompounds from traditional antiviral herb Houttuynia cordata Thunb. as potential inhibitors for three main replication proteins of SARS-CoV-2, namely Main protease (Mpro), Papain-Like protease (PLpro) and ADP ribose phosphatase (ADRP) which control the replication process. A total of 177 phytocompounds were characterized from H. cordata using GC-MS/LC-MS and they were docked against three SARS-CoV-2 proteins (receptors), namely Mpro, PLpro and ADRP using Epic, LigPrep and Glide module of Schrödinger suite 2020-3. During docking studies, phytocompounds (ligand) 6-Hydroxyondansetron (A104) have demonstrated strong binding affinity toward receptors Mpro (PDB ID 6LU7) and PLpro (PDB ID 7JRN) with G-score of - 7.274 and - 5.672, respectively, while Quercitrin (A166) also showed strong binding affinity toward ADRP (PDB ID 6W02) with G-score -6.788. Molecular Dynamics Simulation (MDS) performed using Desmond module of Schrödinger suite 2020-3 has demonstrated better stability in the ligand-receptor complexes A104-6LU7 and A166-6W02 within 100 ns than the A104-7JRN complex. The ADME-Tox study performed using SwissADMEserver for pharmacokinetics of the selected phytocompounds 6-Hydroxyondansetron (A104) and Quercitrin (A166) demonstrated that 6-Hydroxyondansetron passes all the required drug discovery rules which can potentially inhibit Mpro and PLpro of SARS-CoV-2 without causing toxicity while Quercitrin demonstrated less drug-like properties but also demonstrated as potential inhibitor for ADRP. Present findings confer opportunities for 6-Hydroxyondansetron and Quercitrin to be developed as new therapeutic drug against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Houttuynia , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Houttuynia/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Espectrometria de Massas em Tandem
20.
Mol Divers ; 26(4): 1933-1955, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34554395

RESUMO

Breast and stomach cancer is reported as a leading cause for human mortality across the world. The overexpression of receptor tyrosine kinase (RTK) proteins, namely the human epidermal growth factor receptor2 (HER2) and the vascular endothelial growth factor receptor2 (VEGFR2), is reported to be responsible for development and metastasis of breast and stomach cancer. Although several synthetic tyrosine kinase inhibitors (TKIs) as drug candidates targeting RTK-HER2 and VEGFR2 are currently available in the market, these are expensive with the reported side effects. This confers an opportunity for development of alternative novel tyrosine kinase inhibitors (TKIs) for RTK-HER2 and VEGFR2 receptors from the botanical sources. In the present study, we characterized 47 bioactive phytocompounds from the methanol extracts of the rhizomes of Asiatic traditional medicinal herbs-Panax bipinnatifidus and Panax pseudoginseng, of Indian Himalayan landraces using HPLC, GC-MS and high-sensitivity LC-MS tools. We performed molecular docking and molecular dynamics simulation analysis using Schrödinger suite 2020-3 to confirm the TKI phytocompounds showing the best binding affinity towards RTK-HER2 and VEGFR2 receptors. The results of molecular docking studies confirmed that the phytocompound (ligand) luteolin 7-O-glucoside (IHP15) showed the highest binding affinity towards receptor HER2 (PDB ID: 3PP0) with docking score and Glide g score (G-Score) of - 13.272, while chlorogenic acid (IHP12) showed the highest binding affinity towards receptor VEGFR2 (PDB ID: 4AGC) with docking score and Glide g score (G-Score) of - 10.673. Molecular dynamics (MD) simulation analysis carried out for 100 ns has confirmed strong binding interaction between the ligand and receptor complex [luteolin 7-O-glucoside (IHP15) and HER2 (PDB ID: 3PP0)] and is found to be stabilized within 40 to 100 ns of MD simulation, whereas ligand-receptor complex [chlorogenic acid (IPH12) and VEGFR2 (PDB ID: 4AGC)] also showed strong binding interaction and is found to be stabilized within 18-30 ns but slightly deviated during 100 ns of MD simulation. In silico ADME-Tox study using SwissADME revealed that the ligands luteolin 7-O-glucoside (IHP15) and chlorogenic acid (IHP12) have passed majority parameters of the common drug discovery rules. The present study has confirmed luteolin 7-O-glucoside (IHP15) and chlorogenic acid (IHP12) as potential tyrosine kinase inhibitors (TKIs) which were found to inhibit RTKs-HER2 and VEGFR2 receptor proteins, and thus paving the way for development of alternative potential TKIs (drug molecules) for treatment of HER2- and VEGFR2-positive breast and stomach cancer.


Assuntos
Panax , Inibidores de Proteínas Quinases , Ácido Clorogênico , Glucosídeos , Humanos , Ligantes , Luteolina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Panax/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Neoplasias Gástricas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...