Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 126(3): 471-480, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32386315

RESUMO

BACKGROUND AND AIMS: Sexual dimorphism for floral traits is common in dioecious plant species. Beyond its significance for understanding how selection acts on plant traits through male vs. female reproductive function, sexual dimorphism has also been proposed as a possible risky characteristic for insect-pollinated plants, as it could drive pollinators to forage mostly on male plants. However, even though most flowering plant species spread their flowering across several weeks or months, the temporal variation of floral phenotypes and sexual dimorphism have rarely been investigated. METHODS: We performed a survey of male and female plants from the dioecious generalist-pollinated Silene dioica (Caryophyllaceae) in a common garden experiment, over two consecutive flowering seasons. Flower number and floral size were measured each week, as well as pollen quantity and viability in male plants. KEY RESULTS: Sexual dimorphism was found for all investigated floral traits, with males showing an overall higher investment in flower production and flower size. Males and females showed a similar temporal decline in flower size. The temporal dynamics of daily flower number differed between sexes, with males showing a peak in the middle of their flowering season, whereas flower production by females was quite stable over time. At the scale of the experimental population, both individual and floral sex ratios appeared to vary across the flowering season. Moreover, because the onset of flowering varied among plants, the magnitude of sexual dimorphism in floral size also fluctuated strongly through time. CONCLUSIONS: Capturing male/female differences with only one temporal measurement per population may not be informative. This opens stimulating questions about how pollinator behaviour and resulting pollination efficiency may vary across the flowering season.


Assuntos
Caracteres Sexuais , Silene , Animais , Feminino , Flores , Masculino , Pólen , Polinização
2.
J Evol Biol ; 28(3): 642-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25661713

RESUMO

Genes of the major histocompatibility complex (MHC) are regarded as a potentially important target of mate choice due to the fitness benefits that may be conferred to the offspring. According to the complementary genes hypothesis, females mate with MHC dissimilar males to enhance the immunocompetence of their offspring or to avoid inbreeding depression. Here, we investigate whether selection favours a preference for maximally dissimilar or optimally dissimilar MHC class I types, based on MHC genotypes, average amino acid distances and the functional properties of the antigen-binding sites (MHC supertypes); and whether MHC type dissimilarity predicts relatedness between mates in a wild great tit population. In particular, we explore the role that MHC class I plays in female mate choice decisions while controlling for relatedness and spatial population structure, and examine the reproductive fitness consequences of MHC compatibility between mates. We find no evidence for the hypotheses that females select mates on the basis of either maximal or optimal MHC class I dissimilarity. A weak correlation between MHC supertype sharing and relatedness suggests that MHC dissimilarity at functional variants may not provide an effective index of relatedness. Moreover, the reproductive success of pairs did not vary with MHC dissimilarity. Our results provide no support for the suggestion that selection favours, or that mate choice realizes, a preference for complimentary MHC types.


Assuntos
Genes MHC Classe I , Preferência de Acasalamento Animal/fisiologia , Passeriformes/genética , Animais , Inglaterra , Feminino , Genética Populacional , Masculino , Dados de Sequência Molecular , Passeriformes/fisiologia , Reprodução/genética
3.
Heredity (Edinb) ; 112(3): 307-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24149651

RESUMO

Linking variation in quantitative traits to variation in the genome is an important, but challenging task in the study of life-history evolution. Linkage maps provide a valuable tool for the unravelling of such trait-gene associations. Moreover, they give insight into recombination landscapes and between-species karyotype evolution. Here we used genotype data, generated from a 10k single-nucleotide polymorphism (SNP) chip, of over 2000 individuals to produce high-density linkage maps of the great tit (Parus major), a passerine bird that serves as a model species for ecological and evolutionary questions. We created independent maps from two distinct populations: a captive F2-cross from The Netherlands (NL) and a wild population from the United Kingdom (UK). The two maps contained 6554 SNPs in 32 linkage groups, spanning 2010 cM and 1917 cM for the NL and UK populations, respectively, and were similar in size and marker order. Subtle levels of heterochiasmy within and between chromosomes were remarkably consistent between the populations, suggesting that the local departures from sex-equal recombination rates have evolved. This key and surprising result would have been impossible to detect if only one population was mapped. A comparison with zebra finch Taeniopygia guttata, chicken Gallus gallus and the green anole lizard Anolis carolinensis genomes provided further insight into the evolution of avian karyotypes.


Assuntos
Genética Populacional , Passeriformes/genética , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Animais , Galinhas/genética , Mapeamento Cromossômico , Feminino , Tentilhões/genética , Ligação Genética , Genoma , Lagartos/genética , Masculino , Países Baixos , Reino Unido
4.
J Evol Biol ; 26(9): 2063-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23786459

RESUMO

Lower visibility of female scientists, compared to male scientists, is a potential reason for the under-representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under-represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001-2011, 9-23% of invited speakers were women. This under-representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high-impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early-mid career stage scientists, but was similar to senior scientists and authors that have published in high-impact journals. High-quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks.


Assuntos
Evolução Biológica , Congressos como Assunto/tendências , Pesquisadores/estatística & dados numéricos , Sexismo/tendências , Feminino , Humanos , Pesquisadores/tendências
5.
New Phytol ; 195(3): 676-687, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22691102

RESUMO

Variation among individuals in reproductive success is advocated as a major process driving evolution of sexual polymorphisms in plants, such as gynodioecy where females and hermaphrodites coexist. In gynodioecious Beta vulgaris ssp. maritima, sex determination involves cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. Both restored CMS and non-CMS hermaphrodites co-occur. Genotype-specific differences in male fitness are theoretically expected to explain the maintenance of cytonuclear polymorphism. Using genotypic information on seedlings and flowering plants within two metapopulations, we investigated whether male fecundity was influenced by ecological, phenotypic and genetic factors, while taking into account the shape and scale of pollen dispersal. Along with spatially restricted pollen flow, we showed that male fecundity was affected by flowering synchrony, investment in reproduction, pollen production and cytoplasmic identity of potential fathers. Siring success of non-CMS hermaphrodites was higher than that of restored CMS hermaphrodites. However, the magnitude of the difference in fecundity depended on the likelihood of carrying restorer alleles for non-CMS hermaphrodites. Our results suggest the occurrence of a cost of silent restorers, a condition supported by scarce empirical evidence, but theoretically required to maintain a stable sexual polymorphism in gynodioecious species.


Assuntos
Beta vulgaris/genética , Heterogeneidade Genética , Sementes/genética , Beta vulgaris/fisiologia , Citoplasma/genética , Citoplasma/fisiologia , Ecossistema , Aptidão Genética , Genótipo , Organismos Hermafroditas , Modelos Biológicos , Fenótipo , Infertilidade das Plantas , Pólen/fisiologia , Sementes/fisiologia , Seleção Genética , Autofertilização
6.
J Evol Biol ; 24(11): 2456-72, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21955089

RESUMO

In gynodioecious species, in which hermaphroditic and female plants co-occur, the maintenance of sexual polymorphism relies on the genetic determination of sex and on the relative fitness of the different phenotypes. Flower production, components of male fitness (pollen quantity and pollen quality) and female fitness (fruit and seed set) were measured in gynodioecious Beta vulgaris spp. maritima, in which sex is determined by interactions between cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. The results suggested that (i) female had a marginal advantage over hermaphrodites in terms of flower production only, (ii) restored CMS hermaphrodites (carrying both CMS genes and nuclear restorers) suffered a slight decrease in fruit production compared to non-CMS hermaphrodites and (iii) restored CMS hermaphrodites were poor pollen producers compared to non-CMS hermaphrodites, probably as a consequence of complex determination of restoration. These observations potentially have important consequences for the conditions of maintenance of sexual polymorphism in B. vulgaris and are discussed in the light of existing theory on evolutionary dynamics of gynodioecy.


Assuntos
Beta vulgaris/fisiologia , Evolução Biológica , Aptidão Genética/fisiologia , Modelos Biológicos , Processos de Determinação Sexual/fisiologia , Beta vulgaris/genética , Flores/crescimento & desenvolvimento , França , Frutas/crescimento & desenvolvimento , Fatores Sexuais
7.
J Evol Biol ; 23(12): 2636-47, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21040067

RESUMO

In sexually polymorphic plants, the spatial distribution of sexes is usually not random. Local variation in phenotype frequencies is expected to affect individual fitness of the different phenotypes. For gynodioecious species, with co-occurrence of hermaphrodites and females, if sexual phenotypes are structured in space and pollen flow is spatially restricted, local pollen availability should vary among patches. Female fitness may thus be low when hermaphrodites are locally rare. To test this hypothesis, we analysed how the reproductive output of females varied among patches within two natural study sites of the gynodioecious wind-pollinated Beta vulgaris ssp. maritima. Plants growing in female-biased areas and experiencing pollen limitation were found to have low fruit and seed sets but did not reallocate resources towards better offspring. Our results show that fine-scale processes influence individual fitness and the evolution of sex ratio in sexually polymorphic plants.


Assuntos
Beta vulgaris/fisiologia , Pólen/fisiologia , Polinização , Beta vulgaris/genética , Beta vulgaris/crescimento & desenvolvimento , Fenótipo , Dinâmica Populacional , Reprodução Assexuada/genética
8.
J Evol Biol ; 21(1): 202-212, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18005112

RESUMO

Gynodioecious species are defined by the co-occurrence of two clearly separated categories of plants: females and hermaphrodites. The hermaphroditic category may, however, not be homogeneous, as male fitness may vary among hermaphrodites as a result of many biological factors. In this study, we analysed estimates of pollen quantity and viability in the gynodioecious Beta vulgaris ssp. maritima, comparing hermaphrodites bearing a male-fertile cytotype and hermaphrodites bearing cytoplasmic male sterility (CMS) genes, which are counteracted by nuclear restoration factors. We show that: (i) pollen quantity continuously varies among restored hermaphrodites, suggesting a complex genetic determination of nuclear restoration; (ii) pollen viability was lower in restored (CMS) hermaphrodites than in non-CMS hermaphrodites, probably because of incomplete restoration in some of these plants; and (iii) pollen quantity and viability also varied among hermaphrodites with male-fertile cytotypes, possibly a result of a silent cost of restoration. Finally, we discuss the consequences of these results for pollen flow and the dynamics of gynodioecy.


Assuntos
Beta vulgaris/fisiologia , Pólen/fisiologia , Alelos , Beta vulgaris/genética , Fenótipo , Seleção Genética , Razão de Masculinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA