Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.534
Filtrar
1.
J Hepatocell Carcinoma ; 11: 1221-1233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957436

RESUMO

Purpose: Long noncoding RNAs (lncRNAs) might be closely associated with hepatocellular carcinoma (HCC) progression and could serve as diagnostic and prognostic markers. This study aimed to investigate lncRNA-based diagnostic biomarkers for hepatitis B virus (HBV)-associated HCC. Materials and Methods: High-throughput transcriptome sequencing was conducted on the liver tissues of 15 patients with HBV-associated liver diseases (5 with chronic hepatitis B [CHB], 5 with liver cirrhosis [LC], and 5 with HCC). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze lncRNA expressions. Potential diagnostic performance for HBV-associated HCC screening was evaluated. Results: Through trend analysis and functional analysis, we found that 8 lncRNAs were gradually upregulated and 1 lncRNA was progressively downregulated by regulation of target mRNAs and downstream HCC-associated signaling pathways. The validation of dysregulated lncRNAs in peripheral blood mononuclear cells (PBMCs) and HCC tissues by qRT-PCR revealed that ADAMTSL4-AS1, SOCS2-AS1, and AC067931 were significantly increased in HCC compared with CHB and cirrhosis. Moreover, differentially expressed lncRNAs were aberrantly elevated in Huh7, Hep3B, HepG2, and HepG2.215 cells compared with LX2 cells. Furthermore, ADAMTSL4-AS1, SOCS2-AS1, and AC067931 were identified as novel biomarkers for HBV-associated HCC. For distinguishing HCC from CHB, ADAMTSL4-AS1, AC067931, and SOCS2-AS1 combined with alpha-fetoprotein (AFP) had an area under the curve (AUC) of 0.945 (sensitivity, 83.9%; specificity, 89.8%). Similarly, for distinguishing HCC from LC, this combination had an AUC of 0.871 (sensitivity, 91.1%; specificity, 68.2%). Furthermore, this combination showed the highest diagnostic ability to distinguish HCC from CHB and LC (AUC, 0.905; sensitivity, 91.1%; specificity, 75.3%). In particular, this combination identified AFP-negative (AFP < 20 ng/mL) (AUC = 0.814), small (AUC = 0.909), and early stage (AUC = 0.863) tumors. Conclusion: ADAMTSL4-AS1, SOCS2-AS1, and AC067931 combined with AFP in PBMCs may serve as a noninvasive diagnostic biomarker for HBV-associated HCC, especially AFP-negative, small, and early stage HCC.

2.
Sci Rep ; 14(1): 16134, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997336

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a complex chronic pain disorder with an elusive etiology and nonspecific symptoms. Although numerous animal models with phenotypes similar to human disease have been established, no available regimen can consistently alleviate clinical symptoms. This dilemma led us to question whether current animal models adequately represent IC/BPS. We compared four commonly used IC/BPS rat models to determine their diverse histopathological and molecular patterns. Female rats were given single treatments with hydrochloric acid (HCL), acetic acid (AA), protamine sulfate plus lipopolysaccharide (PS + LPS), or cyclophosphamide (CYP) to induce IC/BPS. Bladder sections were stained for histopathologic evaluation, and mRNA expression profiles were examined using next-generation sequencing and gene set analyses. Mast cell counts were significantly higher in the HCL and AA groups than in the PS + LPS, CYP, and control groups, but only the AA group showed significant collagen accumulation. The models differed substantially in terms of their gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our observations suggest that none of these rat models fully reflects the complexity of IC/BPS. We recommend that future studies apply and compare multiple models simultaneously to fully replicate the complicated features of IC/BPS.


Assuntos
Cistite Intersticial , Modelos Animais de Doenças , Animais , Cistite Intersticial/patologia , Cistite Intersticial/induzido quimicamente , Cistite Intersticial/metabolismo , Feminino , Ratos , Bexiga Urinária/patologia , Bexiga Urinária/metabolismo , Bexiga Urinária/efeitos dos fármacos , Ratos Sprague-Dawley , Mastócitos/metabolismo , Ciclofosfamida/efeitos adversos , Ácido Clorídrico/efeitos adversos , Ácido Clorídrico/toxicidade , Lipopolissacarídeos
4.
Adv Healthc Mater ; : e2402108, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036817

RESUMO

Reactive oxygen species (ROS), as metabolic byproducts, play pivotal role in physiological and pathological processes. Recently, studies on the regulation of ROS levels for disease treatments have attracted extensive attention, mainly involving the ROS-induced toxicity therapy mediated by ROS producers and antioxidant therapy by ROS scavengers. Nanotechnology advancements have led to the development of numerous nanomaterials with ROS-modulating capabilities, among which carbon dots (CDs) standing out as noteworthy ROS-modulating nanomedicines own their distinctive physicochemical properties, high stability, and excellent biocompatibility. Despite progress in treating ROS-related diseases based on CDs, critical issues such as rational design principles for their regulation remain underexplored. The primary cause of these issues may stem from the intricate amalgamation of core structure, defects, and surface states, inherent to CDs, which poses challenges in establishing a consistent generalization. This review succinctly summarizes the recently progress of ROS-modulated approaches using CDs in disease treatment. Specifically, it investigates established therapeutic strategies based on CDs-regulated ROS, emphasizing the interplay between intrinsic structure and ROS generation or scavenging ability. The conclusion raises several unresolved key scientific issues and prominent technological bottlenecks, and explores future perspectives for the comprehensive development of CDs-based ROS-modulating therapy.

5.
Chemistry ; : e202402262, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38945834

RESUMO

As the key component of various energy storage and conversion devices, proton exchange membranes (PEMs) have been attracting significant interest. However, their further development is limited by the high cost of perfluorosulfonic acid polymers and the poor stability of acid-dopped non-fluorinated polymers. Recently, a new group of PEMs has been developed by hybridizing polyoxometalates (POMs), a group of super acidic sub-nanoscale metal oxide clusters, with polymers. POMs can serve simultaneously as both proton sponges and stabilizing agents, and their complexation with polymers can further improve polymers' mechanical performance and processability. Enormous efforts have been focused on studying supramolecular complexation or covalent grafting of POMs with various polymers to optimize PEMs in terms of cost, mechanical properties and stabilities. This concept summarizes recent advances in this emerging field and outlines the design strategies and application perspectives employed for using POM-polymer hybrid materials as PEMs.

6.
Front Public Health ; 12: 1364048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873290

RESUMO

Background: It is important to figure out the immunity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) reinfection to understand the response of humans to viruses. A serological survey for previously infected populations in Jiangsu Province was conducted to compare the antibody level of SARS-CoV-2 in reinfection by Omicron or not. Methods: Reinfection with SARS-CoV-2 was defined as an individual being infected again after 90 days of the initial infection. Telephone surveys and face-to-face interviews were implemented to collect information. Experimental and control serum samples were collected from age-sex-matched reinfected and non-reinfected cases, respectively. IgG anti-S and neutralizing antibodies (Nab) concentrations were detected by the Magnetism Particulate Immunochemistry Luminescence Method (MCLIA). Antibody titers were log(2)-transformed and analyzed by a two-tailed Mann-Whitney U test. Subgroup analysis was conducted to explore the relationship between the strain type of primary infection, SARS-Cov-2 vaccination status, and antibody levels. Multivariate linear regression models were used to identify associations between reinfection with IgG and Nab levels. Results: Six hundred thirty-one individuals were enrolled in this study, including 327 reinfected cases and 304 non-reinfected cases. The reinfection group had higher IgG (5.65 AU/mL vs. 5.22 AU/mL) and Nab (8.02 AU/mL vs. 7.25 AU/mL) levels compared to the non-reinfection group (p < 0.001). Particularly, individuals who had received SARS-CoV-2 vaccination or were initially infected with the Wild type and Delta variant showed a significant increase in antibody levels after reinfection. After adjusting demographic variables, vaccination status and the type of primary infection together, IgG and Nab levels in the reinfected group increased by log(2)-transformed 0.71 and 0.64 units, respectively (p < 0.001). This revealed that reinfection is an important factor that affects IgG and Nab levels in the population. Conclusion: Reinfection with Omicron in individuals previously infected with SARS-CoV-2 enhances IgG and Nab immune responses.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Imunoglobulina G , Reinfecção , SARS-CoV-2 , Humanos , COVID-19/imunologia , Imunoglobulina G/sangue , SARS-CoV-2/imunologia , Reinfecção/imunologia , Reinfecção/virologia , China , Anticorpos Neutralizantes/sangue , Masculino , Feminino , Anticorpos Antivirais/sangue , Pessoa de Meia-Idade , Adulto , Idoso
7.
Nat Immunol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942990

RESUMO

The immunological mechanisms underlying chronic colitis are poorly understood. T follicular helper (TFH) cells are critical in helping B cells during germinal center reactions. In a T cell transfer colitis model, a lymphoid structure composed of mature dendritic cells (DCs) and TFH cells was found within T cell zones of colonic lymphoid follicles. TFH cells were required for mature DC accumulation, the formation of DC-T cell clusters and colitis development. Moreover, DCs promoted TFH cell differentiation, contributing to colitis development. A lineage-tracing analysis showed that, following migration to the lamina propria, TFH cells transdifferentiated into long-lived pathogenic TH1 cells, promoting colitis development. Our findings have therefore demonstrated the reciprocal regulation of TFH cells and DCs in colonic lymphoid follicles, which is critical in chronic colitis pathogenesis.

8.
Cell Rep ; 43(6): 114301, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823016

RESUMO

CD8+ T cells are rendered exhausted in tumor and chronic infection. Among heterogeneous exhausted T cells, a subpopulation of progenitor-like (Tpex) cells have been found important for long-term tumor or pathogen control and are also the main responders in immunotherapy. Using an RFP reporter mouse for the orphan nuclear receptor NR4A1, originally characterized as critical in T cell dysfunction, we discover that the reporter is highly expressed in Tpex cells in tumor and chronic infection. Enforced expression of Nr4a1 promotes Tpex cell accumulation, whereas tumor control is improved after Nr4a1 deletion, associated with increased effector function but decreased long-term maintenance of CD8+ T cells. Integrating chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analysis, NR4A1 is found to bind and promote the expression of Tpex-related genes, as well as suppress terminal differentiation-associated genes. This study therefore has identified a key role of NR4A1 in Tpex regulation and provides a promising target for immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Diferenciação Celular , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Microambiente Tumoral , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Microambiente Tumoral/imunologia , Camundongos Endogâmicos C57BL , Transcrição Gênica , Células-Tronco/metabolismo , Humanos
9.
J Biol Chem ; 300(7): 107447, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844134

RESUMO

A high level of PD-L1 in cancer cells promotes tumor immune escape and inhibits tumor immunotherapy. Although PD-L1 gene expression is upregulated by multiple pathways, its gene transcriptional repression is still unclear. Here we found that loss of PPARα, one of the peroxisome-proliferator-activated receptors (PPARs) family members, promoted colorectal tumor immune escape. Mechanistically, PPARα directly bound to the PD-L1 promoter resulting in its gene transcriptional repression, which in turn increased T cell activity, and PPARα agonist enhanced this event. However, ERK induced PPARα-S12 phosphorylation leading to blockade of PPARα-mediated PD-L1 transcriptional repression, and the combination of ERK inhibitor with PPARα agonist significantly inhibited tumor immune escape. These findings suggest that the ERK-PPARα pathway inhibited PD-L1 gene transcriptional repression and promoted colorectal tumor immune escape.

10.
Sci Immunol ; 9(95): eadj9730, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728414

RESUMO

Chimeric antigen receptor (CAR) T cell immunotherapy for the treatment of neurological autoimmune diseases is promising, but CAR T cell kinetics and immune alterations after treatment are poorly understood. Here, we performed single-cell multi-omics sequencing of paired cerebrospinal fluid (CSF) and blood samples from patients with neuromyelitis optica spectrum disorder (NMOSD) treated with anti-B cell maturation antigen (BCMA) CAR T cells. Proliferating cytotoxic-like CD8+ CAR T cell clones were identified as the main effectors in autoimmunity. Anti-BCMA CAR T cells with enhanced features of chemotaxis efficiently crossed the blood-CSF barrier, eliminated plasmablasts and plasma cells in the CSF, and suppressed neuroinflammation. The CD44-expressing early memory phenotype in infusion products was potentially associated with CAR T cell persistence in autoimmunity. Moreover, CAR T cells from patients with NMOSD displayed distinctive features of suppressed cytotoxicity compared with those from hematological malignancies. Thus, we provide mechanistic insights into CAR T cell function in patients with neurological autoimmune disease.


Assuntos
Autoimunidade , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autoimunidade/imunologia , Sistema Nervoso Central/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/terapia , Receptores de Antígenos Quiméricos/imunologia , Análise de Célula Única
11.
Cell Mol Immunol ; 21(7): 752-769, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822080

RESUMO

The development of distinct dendritic cell (DC) subsets, namely, plasmacytoid DCs (pDCs) and conventional DC subsets (cDC1s and cDC2s), is controlled by specific transcription factors. IRF8 is essential for the fate specification of cDC1s. However, how the expression of Irf8 is regulated is not fully understood. In this study, we identified TRIM33 as a critical regulator of DC differentiation and maintenance. TRIM33 deletion in Trim33fl/fl Cre-ERT2 mice significantly impaired DC differentiation from hematopoietic progenitors at different developmental stages. TRIM33 deficiency downregulated the expression of multiple genes associated with DC differentiation in these progenitors. TRIM33 promoted the transcription of Irf8 to facilitate the differentiation of cDC1s by maintaining adequate CDK9 and Ser2 phosphorylated RNA polymerase II (S2 Pol II) levels at Irf8 gene sites. Moreover, TRIM33 prevented the apoptosis of DCs and progenitors by directly suppressing the PU.1-mediated transcription of Bcl2l11, thereby maintaining DC homeostasis. Taken together, our findings identified TRIM33 as a novel and crucial regulator of DC differentiation and maintenance through the modulation of Irf8 and Bcl2l11 expression. The finding that TRIM33 functions as a critical regulator of both DC differentiation and survival provides potential benefits for devising DC-based immune interventions and therapies.


Assuntos
Proteína 11 Semelhante a Bcl-2 , Diferenciação Celular , Células Dendríticas , Homeostase , Fatores Reguladores de Interferon , Camundongos Endogâmicos C57BL , Fatores de Transcrição , Animais , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Células Dendríticas/metabolismo , Células Dendríticas/citologia , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Transcrição Gênica , Apoptose , RNA Polimerase II/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Transativadores/metabolismo , Transativadores/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos Knockout , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia
12.
Metabolites ; 14(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38786752

RESUMO

Metabolomics, especially urine-based studies, offers incredible promise for the discovery and development of clinically impactful biomarkers. However, due to the unique challenges of urine, a highly precise and reproducible workflow for NMR-based urine metabolomics is lacking. Using 1D and 2D non-uniform sampled (NUS) 1H-13C NMR spectroscopy, we systematically explored how changes in hydration or specific gravity (SG) and pH can impact biomarker discovery. Further, we examined additional sources of error in metabolomics studies and identified Navigator molecules that could monitor for those biases. Adjustment of SG to 1.002-1.02 coupled with a dynamic sum-based peak thresholding eliminates false positives associated with urine hydration and reduces variation in chemical shift. We identified Navigator molecules that can effectively monitor for inconsistencies in sample processing, SG, protein contamination, and pH. The workflow described provides quality assurance and quality control tools to generate high-quality urine metabolomics data, which is the first step in biomarker discovery.

13.
Sci Total Environ ; 932: 173117, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734097

RESUMO

2,2',6-Tribromobisphenol A (Tri-BBPA), the main debrominated congener of tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and human body but with unknown toxicity. Tri-BBPA was synthesized and applied to investigate its sub-chronic exposure effects on 28 organ coefficients and clinical health indicators related to liver function, kidney function, and cardiovascular system function in female mice. Results showed that the liver was the targeted organ of Tri-BBPA exposure. Compared to the control group, the changes in liver coefficient, cholinesterase, total protein, albumin, γ-glutamyl transpeptidase, lactate dehydrogenase, and creatine kinase levels ranged from -61.2 % to 35.5 % in the high-exposed group. Creatine kinase was identified as a critical effect indicator of Tri-BBPA exposure. Using the Bayesian benchmark dose derivation method, a lower reference dose than TBBPA was established for Tri-BBPA (10.6 µg/kg-day). Serum metabolomics revealed that Tri-BBPA exposure may primarily damage the liver by disrupting tryptophan metabolism related to L-alanine, tryptamine, 5-hydroxyindoleacetic acid, and 5-methoxyindoleacetate in liver cells and leading to liver dysfunction. Notably, epilepsy, schizophrenia, early preeclampsia, and late-onset preeclampsia were the top six enriched diseases, suggesting that the nervous system may be particularly affected by Tri-BBPA exposure. Our findings hinted a non-negligible health risk of exposure to debrominated products of TBBPA.


Assuntos
Bifenil Polibromatos , Animais , Camundongos , Feminino , Bifenil Polibromatos/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Poluentes Ambientais/toxicidade
14.
J Asian Nat Prod Res ; 26(7): 833-842, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38584456

RESUMO

Fourteen diphyllin 4-C-substituted alkylide derivatives were designed and synthesized using a Heck coupling and subsequent hydrogenation reaction. Olefins 3g and 3i exhibited the highest cytotoxicity on breast cancer cell lines MCF-7 with IC50 values of 0.08 and 0.07 µM, and they showed weaker V-ATPase inhibitory potency compared to diphyllin.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Células MCF-7 , Relação Estrutura-Atividade , Alcenos/química , Alcenos/farmacologia , Lignanas
15.
Immunity ; 57(5): 1087-1104.e7, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38640930

RESUMO

Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.


Assuntos
Hidroxicolesteróis , Lisossomos , Macrófagos , Microambiente Tumoral , Animais , Hidroxicolesteróis/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Humanos , Lisossomos/metabolismo , Microambiente Tumoral/imunologia , Fator de Transcrição STAT6/metabolismo , Adenilato Quinase/metabolismo , Camundongos Endogâmicos C57BL , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Reprogramação Metabólica
16.
Nutr Metab Cardiovasc Dis ; 34(7): 1631-1638, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653673

RESUMO

BACKGROUND AND AIMS: It has been reported that maresin 1 (MaR1) is able to protect against the development of atherogenesis in cellular and animal models. This study was performed to investigate whether plasma MaR1 is associated with the risk of atherosclerotic cardiovascular disease (ASCVD) at the population level. METHODS AND RESULTS: The study included 2822 non-ASCVD participants from a community-based cohort who were followed for about 8 years. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) for ASCVD events according to baseline MaR1 quartiles were calculated using the Cox proportional hazards model. During follow-up, a total of 290 new ASCVD cases were identified. The restricted cubic spline analysis indicated a linear dose-response association between plasma MaR1 and incident ASCVD. In addition, the adjusted-HR (95% CI) for ASCVD events associated with one standard deviation increase in MaR1 was 0.79 (0.68-0.91). Moreover, the adjusted-HRs (95% CIs) for ASCVD events associated with the second, third and fourth quartiles versus the first quartile of plasma MaR1 were 1.00, 1.04 (0.76, 1.42), 0.88 (0.64, 1.22) and 0.58 (0.41, 0.84), respectively. Mediation analyses showed that the association between MaR1 and incident ASCVD was partially mediated by small dense low-density lipoprotein cholesterol, with a mediation proportion of 9.23%. Further, the net reclassification improvement and integrated discrimination improvement of ASCVD risk were significantly improved when MaR1 was added to basic model established by conventional risk factors (all p < 0.01). CONCLUSIONS: Elevated plasma MaR1 concentrations are associated with a lower risk of ASCVD development.


Assuntos
Aterosclerose , Biomarcadores , Ácidos Docosa-Hexaenoicos , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Aterosclerose/epidemiologia , Aterosclerose/sangue , Aterosclerose/diagnóstico , Medição de Risco , Incidência , China/epidemiologia , Biomarcadores/sangue , Idoso , Fatores de Tempo , Ácidos Docosa-Hexaenoicos/sangue , Adulto , Prognóstico , Estudos Prospectivos , Fatores de Risco , Fatores de Proteção , População do Leste Asiático
17.
iScience ; 27(4): 109569, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38623329

RESUMO

Preeclampsia (PE) is a hypertensive pregnancy disorder with increased risk of maternal and fetal morbidity and mortality. Abnormal extravillous trophoblast (EVT) development and function is considered to be the underlying cause of PE, but has not been previously modeled in vitro. We previously derived induced pluripotent stem cells (iPSCs) from placentas of PE patients and characterized abnormalities in formation of syncytiotrophoblast and responses to changes in oxygen tension. In this study, we converted these primed iPSC to naïve iPSC, and then derived trophoblast stem cells (TSCs) and EVT to evaluate molecular mechanisms underlying PE. We found that primed (but not naïve) iPSC-derived PE-EVT have reduced surface HLA-G, blunted invasive capacity, and altered EVT-specific gene expression. These abnormalities correlated with promoter hypermethylation of genes associated with the epithelial-mesenchymal transition pathway, specifically in primed-iPSC derived PE-EVT. Our findings indicate that abnormal epigenetic regulation might play a role in PE pathogenesis.

18.
Phytochemistry ; 222: 114060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522560

RESUMO

Natural rubber produced in stems of the guayule plant (Parthenium argentatum) is susceptible to post-harvest degradation from microbial or thermo-oxidative processes, especially once stems are chipped. As a result, the time from harvest to extraction must be minimized to recover high quality rubber, especially in warm summer months. Tocopherols are natural antioxidants produced in plants through the shikimate and methyl-erythtiol-4-phosphate (MEP) pathways. We hypothesized that increased in vivo guayule tocopherol content might protect rubber from post-harvest degradation, and/or allow reduced use of chemical antioxidants during the extraction process. With the objective of enhancing tocopherol content in guayule, we overexpressed four Arabidopsis thaliana tocopherol pathway genes in AZ-2 guayule via Agrobacterium-mediated transformation. Tocopherol content was increased in leaf and stem tissues of most transgenic lines, and some improvement in thermo-oxidative stability was observed. Overexpression of the four tocopherol biosynthesis enzymes, however, altered other isoprenoid pathways resulting in reduced rubber, resin and argentatins content in guayule stems. The latter molecules are mainly synthesized from precursors derived from the mevalonate (MVA) pathway. Our results suggest the existence of crosstalk between the MEP and MVA pathways in guayule and the possibility that carbon metabolism through the MEP pathway impacts rubber biosynthesis.


Assuntos
Asteraceae , Folhas de Planta , Caules de Planta , Tocoferóis , Tocoferóis/metabolismo , Tocoferóis/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Caules de Planta/metabolismo , Caules de Planta/química , Caules de Planta/genética , Asteraceae/metabolismo , Asteraceae/química , Asteraceae/genética , Borracha/metabolismo , Borracha/química , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/química , Resinas Vegetais/metabolismo , Resinas Vegetais/química
19.
J Am Chem Soc ; 146(15): 10812-10821, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38466658

RESUMO

Aqueous electrolytes with a low voltage window (1.23 V) and prone side reactions, such as hydrogen evolution reaction and cathode dissolution, compromise the advantages of high safety and low cost of aqueous metal-ion batteries. Herein, introducing catechol (CAT) into the aqueous electrolyte, an outer sphere electron transfer mechanism is initiated to inhibit the water reactivity, achieving an electrochemical window of 3.24 V. In a typical Zn-ion battery, the outer sphere electrons jump from CAT to Zn2+-H2O at a geometrically favorable situation and between the solvation molecules without breaking or forming chemical bonds as that of the inner sphere electron transfers. The excited state π-π stacking further leads to the outer sphere electron transfer occurring at the electrolyte/electrode interface. This high-voltage electrolyte allows achieving an operating voltage two times higher than that of the usual aqueous electrolytes and provides almost the highest energy density and power density for the V2O5-based aqueous Zn-ion full batteries. The Zn//Zn symmetric battery delivers a 4000 h lifespan, and the Zn//V2O5 full battery achieves a ∼380 W h kg-1 energy density and a 92% capacity retention after 3000 cycles at 1 A g-1 and a 2.4 V output voltage. This outer sphere electron transfer strategy paves the way for designing high-voltage aqueous electrolytes.

20.
J Tradit Chin Med ; 44(2): 289-302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504535

RESUMO

OBJECTIVE: To discuss the influence of Sailuotong (, SLT) on the Neurovascular Unit (NVUs) of amyloid precursor protein (APP)/presenilin-1(PS1) mice and evaluate the role of gas supplementation in activating blood circulation during the progression of Alzheimer's disease (AD). METHODS: The mice were allocated into the following nine groups: (a) the C57 Black (C57BL) sham-operated group (control group), (b) ischaemic treatment in C57BL mice (the C57 ischaemic group), (c) the APP/PS1 sham surgery group (APP/PS1 model group), (d) ischaemic treatment in APP/PS1 mice (APP/PS1 ischaemic group), (e) C57BL mice treated with aspirin following ischaemic treatment (C57BL ischaemic + aspirin group), (f) C57BL mice treated with SLT following ischaemic treatment (C57BL ischaemic + SLT group), (g) APP/PS1 mice treated with SLT (APP/PS1 + SLT group), (h) APP/PS1 mice treated with donepezil hydrochloride following ischaemic treatment (APP/PS1 ischaemic + donepezil hydrochloride group) and (i) APP/PS1 mice treated with SLT following ischaemic treatment (APP/PS1 ischaemic + SLT group). The ischaemic model was established by operating on the bilateral common carotid arteries and creating a microembolism. The Morris water maze and step-down tests were used to detect the spatial behaviour and memory ability of mice. The hippocampus of each mouse was observed by haematoxylin and eosin (HE) and Congo red staining. The ultrastructure of NVUs in each group was observed by electron microscopy, and various biochemical indicators were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression level was detected by Western blot. The mRNA expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The results of the Morris water maze and step-down tests showed that ischemia reduced learning and memory in the mice, which were restored by SLT. The results of HE staining showed that SLT restored the pathological changes of the NVUs. The Congo red staining results revealed that SLT also improved the scattered orange-red sediments in the upper cortex and hippocampus of the APP/PS1 and APP/PS1 ischaemic mice. Furthermore, SLT significantly reduced the content of Aß, improved the vascular endothelium and repaired the mitochondrial structures. The ELISA detection, western blot detection and qRT-PCR showed that SLT significantly increased the vascular endothelial growth factor (VEGF), angiopoietin and basic fibroblast growth factor, as well as the levels of gene and protein expression of low-density lipoprotein receptor-related protein-1 (LRP-1) and VEGF in brain tissue. CONCLUSIONS: By increasing the expression of VEGF, SLT can promote vascular proliferation, up-regulate the expression of LRP-1, promote the clearance of Aß and improve the cognitive impairment of APP/PS1 mice. These results confirm that SLT can improve AD by promoting vascular proliferation and Aß clearance to protect the function of NVUs.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Medicamentos de Ervas Chinesas , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular , Donepezila , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Vermelho Congo , Camundongos Endogâmicos C57BL , Aspirina , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...