Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Shanghai Kou Qiang Yi Xue ; 29(3): 225-230, 2020 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-33043336

RESUMO

PURPOSE: To investigate the effects of exendin-4(EX-4) on proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells(PDLSCs). METHODS: PDLSCs were isolated and cultured using limited dilution method in vitro. Colony formation assay, osteogenic and adipogenic differentiation were applied to identify the stem cells. Immunofluorescence staining was used to detect the expression of EX-4 receptor glucagon-like peptide-1 receptor (GLP-1R) on the surface of PDLSCs. PDLSCs were stimulated with 5, 10, 20 or 50 nmol/L EX-4 in vitro. CCK-8, Transwell assay and alkaline phosphatase(ALP) activity assay were used to determine the effects of EX-4 on PDLSCs proliferation, migration and osteogenic differentiation. Quantitative real-time polymerase chain reaction was used to determine the expression of osteogenic related genes ALP, runt-related transcription factor 2(Runx2) and osteocalcin (OCN). The data were analyzed by Graphpad Prims 6.0 software package. RESULTS: PDLSCs were successfully isolated and cultivated. GLP-1R positively expressed on the surface of PDLSCs. EX-4 exerted no significant effect on PDLSCs proliferation(P>0.05). EX-4 significantly promoted migration, ALP activity and osteogenic related genes expression of PDLSCs (P<0.05). CONCLUSIONS: 10 nmol/L EX-4 could promote migration and osteogenic differentiation of PDLSCs.


Assuntos
Exenatida , Ligamento Periodontal , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Exenatida/farmacologia , Humanos , Osteogênese , Células-Tronco
2.
Mater Sci Eng C Mater Biol Appl ; 76: 684-691, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482579

RESUMO

Nanostructure coating on titanium (Ti) implants is well known as a cue for directing osteoblast behavior and function. However, effects of nanostructure coatings on dental stem cells have been rarely explored. In this work, assembled TiO2 nanorod arrays (TNRs) were fabricated on the polished Ti substrates using hydrothermal and sintering methods. The adhesion, morphology, proliferation and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) seeded onto TNRs substrates were evaluated. Ti substrates were used as control. Rougher TNRs showed better hydrophilicity and protein adsorption capacity compared with Ti control. When seeded on TNRs substrates, PDLSCs exhibited more stretched morphology and higher proliferation rate. Cytoskeletal F-actin expression was markedly promoted for PDLSCs cultured on TNRs substrates under osteogenic induction. Alkaline phosphatase (ALP) activity and mineral deposition were also enhanced by TNRs. Moreover, osteogenesis-related markers of ALP, runt related transcription factor 2 (Runx2) and osteopontin (OPN) of PDLSCs cultured on TNRs substrates were significantly up-regulated at both gene and protein levels when compared to Ti substrates. In conclusion, the unique structure of TNRs provided a biocompatible platform for modulating morphology and function of PDLSCs. The promotion of osteogenic differentiation indicated that the surface modification of implants with TNRs may improve the osteogenic activity of implants and the bone-implant integration in future clinical applications.


Assuntos
Ligamento Periodontal , Fosfatase Alcalina , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Nanotubos , Osteogênese , Células-Tronco , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...