Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(6): 2765-2788, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38258472

RESUMO

The power conversion efficiency of metal halide perovskite solar cells (PSCs) has increased dramatically in recent years, but there are still major bottlenecks in the commercial application of such materials, including intrinsic instability caused by external stimuli such as water, oxygen, and radiation, as well as local stress generated inside the perovskite and external stress caused by poor interlayer contact. However, some crucial sources of instability cannot be overcome by conventional encapsulation engineering. Among them, the tensile strain can weaken the chemical bonds in the perovskite lattice, thereby reducing the defects formation energy and activation energy of ion migration and accelerating the degradation rate of the perovskite crystal. This review expounds the latest in-depth understanding of microstrain in perovskite film from the thermodynamic sources and influences on the perovskite physicochemical structure and photoelectric performance. Furthermore, it also summarizes the effective strategies for strain regulation and interlayer contact performance improvement, which are conducive to the improvement of photovoltaic performance and internal stability of PSCs. Finally, we present a prospective outlook on how to achieve more stable and higher efficiency PSCs through strain engineering.

2.
Small ; 20(5): e2304452, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752683

RESUMO

Carbon-based hole transport layer-free perovskite solar cells (PSCs) based on methylammonium lead triiodide (MAPbI3 ) have become one of the research focus due to low cost, easy preparation, and good optoelectronic properties. However, instability of perovskite under vacancy defects and stress-strain makes it difficult to achieve high-efficiency and stable power output. Here, a soft-structured long-chain 2D pentanamine iodide (abbreviated as "PI") is used to improve perovskite quality and interfacial mechanical compatibility. PI containing CH3 (CH2 )4 NH3 + and I- ions not only passivate defects at grain boundaries, but also effectively alleviate residual stress during high temperature annealing via decreasing Young's modulus of perovskite film. Most importantly, PI effectively increases matching degree of Young's modulus between MAPbI3 (47.1 GPa) and carbon (6.7 GPa), and strengthens adhesive fracture energy (Gc ) between perovskite and carbon, which is helpful for outward release of nascent interfacial stress generated under service conditions. Consequently, photoelectric conversion efficiency (PCE) of optimal device is enhanced from 10.85% to 13.76% and operational stability is also significantly improved. 83.1% output is maintained after aging for 720 h at room temperature and 25-60% relative humidity (RH). This strategy of regulation from chemistry and physics provides a strategy for efficient and stable carbon-based PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...