Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1378, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914683

RESUMO

Two-dimensional (2D) van der Waals (vdW) magnets represent one of the most promising horizons for energy-efficient spintronic applications because their broad range of electronic, magnetic and topological properties. However, little is known about the interplay between light and spin properties in vdW layers. Here we show that ultrafast laser excitation can not only generate different type of spin textures in CrGeTe3 vdW magnets but also induce a reversible transformation between them in a topological toggle switch mechanism. Our atomistic spin dynamics simulations and wide-field Kerr microscopy measurements show that different textures can be generated via high-intense laser pulses within the picosecond regime. The phase transformation between the different topological spin textures is obtained as additional laser pulses are applied to the system where the polarisation and final state of the spins can be controlled by external magnetic fields. Our results indicate laser-driven spin textures on 2D magnets as a pathway towards reconfigurable topological architectures at the atomistic level.

2.
Nat Commun ; 13(1): 5976, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216796

RESUMO

Two-dimensional (2D) van der Waals magnets provide new opportunities for control of magnetism at the nanometre scale via mechanisms such as strain, voltage and the photovoltaic effect. Ultrafast laser pulses promise the fastest and most energy efficient means of manipulating electron spin and can be utilized for information storage. However, little is known about how laser pulses influence the spins in 2D magnets. Here we demonstrate laser-induced magnetic domain formation and all-optical switching in the recently discovered 2D van der Waals ferromagnet CrI3. While the magnetism of bare CrI3 layers can be manipulated with single laser pulses through thermal demagnetization processes, all-optical switching is achieved in nanostructures that combine ultrathin CrI3 with a monolayer of WSe2. The out-of-plane magnetization is switched with multiple femtosecond pulses of either circular or linear polarization, while single pulses result in less reproducible and partial switching. Our results imply that spin-dependent interfacial charge transfer between the WSe2 and CrI3 is the underpinning mechanism for the switching, paving the way towards ultrafast optical control of 2D van der Waals magnets for future photomagnetic recording and device technology.

3.
Nano Lett ; 21(21): 9210-9216, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699234

RESUMO

All-optical switching of magnetization has great potential for use in future ultrafast and energy efficient nanoscale magnetic storage devices. So far, research has been almost exclusively focused on rare-earth based materials, which limits device tunability and scalability. Here, we show that a perpendicularly magnetized synthetic ferrimagnet composed of two distinct transition metal ferromagnetic layers, Ni3Pt and Co, can exhibit helicity independent magnetization switching. Switching occurs between two equivalent remanent states with antiparallel alignment of the Ni3Pt and Co magnetic moments and is observable over a broad temperature range. Time-resolved measurements indicate that the switching is driven by a spin-polarized current passing through the subnanometer Ir interlayer. The magnetic properties of this model system may be tuned continuously via subnanoscale changes in the constituent layer thicknesses as well as growth conditions, allowing the underlying mechanisms to be elucidated and paving the way to a new class of data storage devices.

4.
ACS Appl Mater Interfaces ; 12(46): 52116-52124, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33156990

RESUMO

Microwave and heat-assisted magnetic recordings are two competing technologies that have greatly increased the capacity of hard disk drives. The efficiency of the magnetic recording process can be further improved by employing non-collinear spin structures that combine perpendicular and in-plane magnetic anisotropy. Here, we investigate both microwave and optically excited magnetization dynamics in [Co/Pt]/NiFe exchange spring samples. The resulting canted magnetization within the nanoscale [Co/Pt]/NiFe interfacial region allows for optically stimulated magnetization precession to be observed for an extended magnetic field and frequency range. The results can be explained by formation of an imprinted domain structure, which locks the magnetization orientation and makes the structures more robust against external perturbations. Tuning the canted interfacial domain structure may provide greater control of optically excited magnetization reversal and optically generated spin currents, which are of paramount importance for future ultrafast magnetic recording and spintronic applications.

5.
Chem Rev ; 120(13): 6247-6287, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32530607

RESUMO

Plasmonics is a rapidly growing field spanning research and applications across chemistry, physics, optics, energy harvesting, and medicine. Ultrafast photoemission electron microscopy (PEEM) has demonstrated unprecedented power in the characterization of surface plasmons and other electronic excitations, as it uniquely combines the requisite spatial and temporal resolution, making it ideally suited for 3D space and time coherent imaging of the dynamical plasmonic phenomena on the nanofemto scale. The ability to visualize plasmonic fields evolving at the local speed of light on subwavelength scale with optical phase resolution illuminates old phenomena and opens new directions for growth of plasmonics research. In this review, we guide the reader thorough experimental description of PEEM as a characterization tool for both surface plasmon polaritons and localized plasmons and summarize the exciting progress it has opened by the ultrafast imaging of plasmonic phenomena on the nanofemto scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...