Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 675546, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381474

RESUMO

Increasing temperatures and extended drought episodes are among the major constraints affecting food production. Maize has a relatively high temperature optimum for photosynthesis compared to C3 crops, however, the response of this important C4 crop to the combination of heat and drought stress is poorly understood. Here, we hypothesized that resilience to high temperature combined with water deficit (WD) would require efficient regulation of the photosynthetic traits of maize, including the C4-CO2 concentrating mechanism (CCM). Two genotypes of maize with contrasting levels of drought and heat tolerance, B73 and P0023, were acclimatized at high temperature (38°C versus 25°C) under well-watered (WW) or WD conditions. The photosynthetic performance was evaluated by gas exchange and chlorophyll a fluorescence, and in vitro activities of key enzymes for carboxylation (phosphoenolpyruvate carboxylase), decarboxylation (NADP-malic enzyme), and carbon fixation (Rubisco). Both genotypes successfully acclimatized to the high temperature, although with different mechanisms: while B73 maintained the photosynthetic rates by increasing stomatal conductance (gs), P0023 maintained gs and showed limited transpiration. When WD was experienced in combination with high temperatures, limited transpiration allowed water-savings and acted as a drought stress avoidance mechanism. The photosynthetic efficiency in P0023 was sustained by higher phosphorylated PEPC and electron transport rate (ETR) near vascular tissues, supplying chemical energy for an effective CCM. These results suggest that the key traits for drought and heat tolerance in maize are limited transpiration rate, allied with a synchronized regulation of the carbon assimilation metabolism. These findings can be exploited in future breeding efforts aimed at improving maize resilience to climate change.

2.
J Exp Bot ; 71(18): 5302-5312, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32728715

RESUMO

Rubisco is central to carbon assimilation, and efforts to improve the efficiency and sustainability of crop production have spurred interest in phenotyping Rubisco activity. We tested the hypothesis that microtiter plate-based methods provide comparable results to those obtained with the radiometric assay that measures the incorporation of 14CO2 into 3-phosphoglycerate (3-PGA). Three NADH-linked assays were tested that use alternative coupling enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glycerolphosphate dehydrogenase (GlyPDH); phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH); and pyruvate kinase (PK) and lactate dehydrogenase (LDH). To date there has been no thorough evaluation of their reliability by comparison with the 14C-based method. The three NADH-linked assays were used in parallel to estimate (i) the 3-PGA concentration-response curve of NADH oxidation, (ii) the Michaelis-Menten constant for ribulose-1,5-bisphosphate, (iii) fully active and inhibited Rubisco activities, and (iv) Rubisco initial and total activities in fully illuminated and shaded leaves. All three methods correlated strongly with the 14C-based method, and the PK-LDH method showed a strong correlation and was the cheapest method. PEPC-MDH would be a suitable option for situations in which ADP/ATP might interfere with the assay. GAPDH-GlyPDH proved more laborious than the other methods. Thus, we recommend the PK-LDH method as a reliable, cheaper, and higher throughput method to phenotype Rubisco activity for crop improvement efforts.


Assuntos
NAD , Ribulose-Bifosfato Carboxilase , Radioisótopos de Carbono , Reprodutibilidade dos Testes
3.
Front Plant Sci ; 11: 889, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714347

RESUMO

Hydrogen peroxide (H2O2) functions as an important signaling molecule in plants during biotic interactions. However, the extent to which H2O2 accumulates during these interactions and its implications in the development of disease symptoms is unclear. In this work, we provide a step-by-step optimized protocol for in situ quantification of relative H2O2 concentrations in wheat leaves infected with the pathogenic bacterium Pseudomonas syringae pv. atrofaciens (Psa), either alone or in the presence of the beneficial bacterium Herbaspirillum seropedicae (RAM10). This protocol involved the use of 3-3'diaminobenzidine (DAB) staining method combined with image processing to conduct deconvolution and downstream analysis of the digitalized leaf image. The application of a linear regression model allowed to relate the intensity of the pixels resulting from DAB staining with a given concentration of H2O2. Decreasing H2O2 accumulation patterns were detected at increasing distances from the site of pathogen infection, and H2O2 concentrations were different depending on the bacterial combinations tested. Notably, Psa-challenged plants in presence of RAM10 accumulated less H2O2 in the leaf and showed reduced necrotic symptoms, pointing to a potential role of RAM10 in reducing pathogen-triggered H2O2 levels in young wheat plants.

4.
Front Plant Sci ; 9: 1723, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546373

RESUMO

Some plants are able to accumulate in their shoots metals at levels that are toxic to most other organisms. This ability may serve as a defence against herbivores. Therefore, both metal-based and organic defences may affect herbivores. However, how metal accumulation affects the interaction between herbivores and organic plant defences remains overlooked. To fill this gap, we studied the interactions between tomato (Solanum lycopersicum), a model plant that accumulates cadmium, and two spider-mite species, Tetranychus urticae and Tetranychus evansi that, respectively, induce and suppress organic plant defences, measurable via the activity of trypsin inhibitors. We exposed plants to different concentrations of cadmium and measured its effects on mites and plants. In the plant, despite clear evidence for cadmium accumulation, we did not detect any cadmium effects on traits that reflect the general response of the plant, such as biomass, water content, and carbon/nitrogen ratio. Still, we found effects of cadmium upon the quantity of soluble sugars and on leaf reflectance, where it may indicate structural modifications in the cells. These changes in plant traits affected the performance of spider mites feeding on those plants. Indeed, the oviposition of both spider mite species was higher on plants exposed to low concentrations of cadmium than on control plants, but decreased at concentrations above 0.5 mM. Therefore, herbivores with contrasting responses to organic defences showed a similar hormetic response to metal accumulation by the plants. Additionally, we show that the induction and suppression of plant defences by these spider-mite species was not affected by the amount of cadmium supplied to the plants. Furthermore, the effect of cadmium on the performance of spider mites was not altered by infestation with T. urticae or T. evansi. Together, our results suggest no interaction between cadmium-based and organic plant defences, in our system. This may be useful for plants living in heterogeneous environments, as they may use one or the other defence mechanism, depending on their relative performance in each environment.

5.
Methods Mol Biol ; 1770: 239-250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29978406

RESUMO

RuBisCO plays a central role in photosynthesis and, due to its catalytic inefficiencies, frequently limits CO2 assimilation in fully illuminated leaves at the top of unstressed crop canopies. The CO2-fixing enzyme is heavily regulated and not all the enzyme present in the leaf is active at any given moment. In this chapter, a spectrophotometric assay is described for measuring RuBisCO activity and activation state in leaf extracts. Most of the assay components are available commercially and others can be produced by established protocols, making adoption of the assay achievable by most plant biochemistry laboratories. Its relative high-throughput capacity enables large-scale experiments aimed at screening germplasm for improved RuBisCO function.


Assuntos
Folhas de Planta/enzimologia , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Espectrofotometria , Dióxido de Carbono/metabolismo , Ativação Enzimática , Ensaios Enzimáticos , NAD/metabolismo , Fotossíntese , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Espectrofotometria/métodos
6.
Mycorrhiza ; 28(3): 247-258, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29372408

RESUMO

We investigated whether the performance of cork oak under drought could be improved by colonization with the ectomycorrhizal fungus Pisolithus tinctorius. Results show that inoculation alone had a positive effect on plant height, shoot biomass, shoot basal diameter, and root growth. Under drought, root growth of mycorrhizal plants was significantly increased showing that inoculation was effective in increasing tolerance to drought. In accordance, mycorrhizal plants subjected to drought showed less symptoms of stress when compared to non-mycorrhizal plants, such as lower concentration of soluble sugars and starch, increased ability to maintain fatty acid content and composition, and increased unsaturation level of membrane lipids. After testing some of the mechanisms suggested to contribute to the enhanced tolerance of mycorrhizal plants to drought, we could not find any by which Pisolithus tinctorius could benefit cork oak, at least under the drought conditions imposed in our experiment. Inoculation did not increase photosynthesis under drought, suggesting no effect in sustaining stomatal opening at low soil water content. Similarly, plant water status was not affected by inoculation suggesting that P. tinctorius does not contribute to an increased plant water uptake during drought. Inoculation did increase nitrogen concentration in plants but it was independent of the water status. Furthermore, no significant mycorrhizal effect on drought-induced ROS production or osmotic adjustment was detected, suggesting that these factors are not important for the improved drought tolerance triggered by P. tinctorius.


Assuntos
Basidiomycota/fisiologia , Secas , Micorrizas/fisiologia , Quercus/microbiologia , Quercus/fisiologia , Portugal , Quercus/crescimento & desenvolvimento , Estresse Fisiológico , Simbiose
7.
Tree Physiol ; 33(12): 1328-37, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24150034

RESUMO

Montados are evergreen oak woodlands dominated by Quercus species, which are considered to be key to biodiversity conservation and ecosystem services. This ecosystem is often used for cattle breeding in most regions of the Iberian Peninsula, which causes plants to receive extra nitrogen as ammonia (NH(3)) through the atmosphere. The effect of this atmospheric NH(3) (NH(3atm)) on ecosystems is still under discussion. This study aimed to evaluate the effects of an NH(3atm) concentration gradient downwind of a cattle barn in a Montado area. Leaves from the selected Quercus suber L. trees along the gradient showed a clear influence of the NH(3) on δ(13)C, as a consequence of a strong limitation on the photosynthetic machinery by a reduction of both stomatal and mesophyll conductance. A detailed study of the impact of NH(3atm) on the photosynthetic performance of Q. suber trees is presented, and new mechanisms by which NH(3) affects photosynthesis at the leaf level are suggested.


Assuntos
Amônia/farmacologia , Fotossíntese/fisiologia , Transpiração Vegetal/fisiologia , Quercus/fisiologia , Agricultura , Isótopos de Carbono/análise , Ecossistema , Células do Mesofilo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Quercus/efeitos dos fármacos , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...