Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sustain Energy Fuels ; 8(6): 1225-1235, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38481764

RESUMO

This study investigates the hydrogen evolution reaction (HER) efficiency of two photosystems incorporating an all-inorganic molecular thiomolybdate [Mo3S13]2- cluster as a HER catalyst. First, we delve into the performance of a homogeneous [Mo3S13]2-/[Ru(bpy)3]2+ (Mo3/Ru) dyad which demonstrates high turnover frequencies (TOFs) and apparent quantum yields (AQYs) at 445 nm approaching the level of 0.5%, yet its performance is marked by pronounced deactivation. In contrast, a heterogeneous approach involves anchoring [Mo3S13]2- onto graphitic carbon nitride (GCN) nanosheets through weak electrostatic association with its triazine/heptazine scaffold. [Mo3S13]2-/GCN (Mo3/GCN) displays effective H2 generation under visible light, with TOF metrics on par with those of its homogeneous analog. Although substantial leaching of [Mo3S13]2- species from the Mo3/GCN surface occurs, the remaining {Mo3}-based centers demonstrate impressive stability, leading to enduring HER performance, starkly distinguishing it from the homogeneous Mo3/Ru photosystem. Photoluminescence (PL) quenching experiments confirm that the performance of Mo3/GCN is not limited by the quality of the inorganic interface, but could be optimized by using higher surface area supports or a higher concentration of [Mo3S13]2- sites. Our findings showcase complexities underlying the evaluation and comparison of photosystems comprising well-defined catalytic centers and pave the way for developing analogous surface-supported (photo)catalysts with broad use in energy applications.

2.
Chemistry ; 30(4): e202302251, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37702295

RESUMO

FeNi oxides/hydroxides are the best performing catalysts for oxidizing water at basic pH. Consequently, their improvement is the cornerstone to develop more efficient artificial photosynthetic systems. During the last 5 years different reports have demonstrated an enhancement of their activity by engineering their structures via: (1) modulation of the number of oxygen, iron and nickel vacancies; (2) single atoms (SAs) doping with metals such as Au, Ir, Ru and Pt; and (3) modification of their surface using organic ligands. All these strategies have led to more active and stable electrocatalysts for oxygen evolution rection (OER). In this Concept, we critically analyze these strategies using the most relevant examples.

3.
J Colloid Interface Sci ; 652(Pt B): 2147-2158, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703684

RESUMO

CuAl layered double hydroxide (LDH) and polymeric carbon nitride (g-C3N4, GCNN) were assembled to construct a set of novel 2D/2D CuAl-LDH/GCNN heterostructures. These materials were tested towards H2 and O2 generation from water splitting using visible-light irradiation. Compared to pristine materials, the heterostructures displayed strongly enhanced visible-light H2 evolution, dependent on the LDH content, which acts as a cocatalyst, replacing the benchmark Pt. The optimal LDH loading was achieved for 0.2CuAl-LDH/GCNN that exhibited an increased number of active sites and showed a trade-off between charge separation efficiency and light shading, resulting in a 32-fold increase in the amount of evolved H2 compared with GCNN. In addition, the 0.2CuAl-LDH/GCNN heterostructure generated 1.5 times more O2 than GCNN. The higher photocatalytic performance was due to efficient charge carriers' separation at the heterojunction interface via an S-scheme (corroborated by work function, steady-state and time-resolved photoluminescence studies), enhanced utilisation of longer-wavelength photons (>460 nm) and higher surface area available for the catalytic reactions.

4.
J Colloid Interface Sci ; 567: 243-255, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32062085

RESUMO

Undoped metal-free graphene oxide (GO) materials prepared by either a modified Hummers' (GO-H) or a Brodie's (GO-B) method were tested as photocatalysts in aqueous solution for the oxidative conversion of phenol. In the dark, the adsorptive capacity of GO-B towards phenol (~35%) was higher than that of GO-H (~15%). Upon near-UV/Vis irradiation, GO-H was able to remove 21% of phenol after 180 min, mostly through adsorption. On the other hand, by using less energetic visible irradiation, GO-B removed as much as 95% in just 90 min. By thorough characterization of the prepared materials (SEM, HRTEM, TGA, TPD, Raman, XRD, XPS and photoluminescence) the observed performances could be explained in terms of their different surface chemistries. The GO-B presents the lower concentration of oxygen functional groups (in particular carbonyl groups as revealed by XPS) and it has a considerably higher photocatalytic activity compared to GO-H. Photoluminescence (PL) of liquid dispersions and XRD analysis of powders showed lower PL intensity and smaller interlayer distance for GO-B relative to GO-H, respectively: this suggests lower electron-hole recombination and enhanced electron transfer in GO-B, in support of its boosted photocatalytic activity. Reusability tests showed no efficiency loss after a second usage cycle and over three runs under visible irradiation, which was in line with the similarity of the XPS spectra of the fresh and used GO-B materials. Moreover, scavenging studies revealed that holes and hydroxyl radicals were the main reactive species in play during the photocatalytic process. The obtained results, establish for the first time, that GO prepared by Brodie's method is an active and stable undoped metal-free photocatalyst for phenol degradation in aqueous solutions, opening new paths for the application of more sustainable and metal-free materials for water treatment solutions.

5.
Environ Pollut ; 259: 113796, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31884213

RESUMO

Biodigested coffee processing wastewater (CPW) presents a high organic load and does not meet the limits imposed by legislation (namely in Brazil) for discharge into water bodies. Anaerobic digestion generally cannot provide a satisfactory organic matter reduction in CPW as a significant fraction of recalcitrant compounds still persists in the treated effluent. So, this study aims to find alternative ways to remove refractory organic compounds from this wastewater in order to improve the biodegradability and reduce the toxicity, which will allow its recirculation back into the anaerobic digester. Three treatment approaches (Fenton's oxidation - Approach 1, Coagulation/flocculation (C/F) - Approach 2, and the combination of C/F with Fenton's process - Approach 3) were selected to be applied to the biodigested CPW in order to achieve that objective. The application of the Fenton process under the optimal operating conditions (initial pH = 5.0; T = 55 °C, [Fe3+] = 1.8 g L-1 and [H2O2] = 9.0 g L-1) increased the biodegradability (the BOD5:COD ratio raised from 0.34 ± 0.02 in biodigested CPW to 0.44 ± 0.01 after treatment) and eliminated the toxicity (0.0% of Vibrio fischeri inhibition) along with moderate removals of organic matter (51.3%, 55.7% and 39.7% for total organic carbon - TOC, chemical oxygen demand - COD and biochemical oxygen demand - BOD5, respectively). The implementation of a coagulation/flocculation process upstream from Fenton's oxidation, under the best operating conditions (pH 10-11 and [Fe3+] = 250 mg L-1), also allowed to slightly increase the biodegradability (from 0.34 to 0.47) and reduce the toxicity, whereas providing a higher removal of organic matter (TOC = 76.2%, COD = 76.5 and BOD5 = 66.3% for both processes together). Approach 1 and Approach 3 showed to be the best ones, implying similar operating costs (∼74 R$ m-3/∼17 € m-3) and constitute an attractive option for managing biodigested CPW.


Assuntos
Café , Floculação , Peróxido de Hidrogênio/farmacologia , Ferro/farmacologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos , Brasil , Resíduos Industriais , Oxirredução
6.
ChemSusChem ; 11(16): 2681-2694, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29975819

RESUMO

A green, template-free and easy-to-implement strategy was developed to access holey g-C3 N4 (GCN) nanosheets doped with carbon. The protocol involves heating dicyandiamide with ß-cyclodextrin (ßCD) prior to polymerization. The local symmetry of the GCN skeleton is broken, yielding CxGCN (x corresponds to the initial amount of ßCD used) with pores and a distorted structure. The electronic, emission, optical and textural properties of the best-performing material, C2GCN, were significantly modified as compared to bulk GCN. The spectroscopic and luminescent features of C2GCN show the characteristic π-π* electronic transition of GCN, accompanied by much stronger n-π* electronic transitions owing to the porous and distorted network. These new electronic transitions, along with the presence of additional carbon synergistically contributed to enhanced visible light absorption and restrained recombination of electron-hole pairs. Steady-state and time-resolved photoluminescence showed an effective quench of the fluorescence emission, accompanied by a decrease of fluorescence lifetime of C2GCN (2.20 ns) in comparison with GCN (5.85 ns), owing to the delocalization of electron and holes to new recombination centers. The photocatalytic activity of C2GCN was attributed to efficient charge carrier separation and improved visible-light absorbing ability. As result, C2GCN exhibited ∼5 times higher photocatalytic H2 generation under visible light than bulk GCN.

7.
Environ Sci Pollut Res Int ; 21(19): 11218-27, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24838128

RESUMO

Decatungstate W10O32(4-) was efficiently intercalated between the layers of three-dimensionally ordered macroporous Mg2Al-layered double hydroxide. The structural and textural properties of as-prepared intercalated compound were characterized using different solid-state characterization techniques such as X-ray powder diffraction, FTIR and Raman spectroscopies and electronic microscopy. The photocatalytic properties of immobilized W10O32 (4-) within Mg2Al structure were investigated using 2-(1-naphthyl) acetamide (NAD) as a model of pesticide. The influence of different parameters such as amount of catalyst, pH and oxygen concentration were investigated. An optimal NAD degradation was obtained for a photocatalyst concentration of 60 mg l(-1). Under our experimental conditions, this heterogeneous photocatalyst induces photodegradation of 60 % of NAD after 17 h of irradiation at 365 nm and at pH 6.6. Interestingly, pesticide photodegradation leads to the mineralization of substrates to H2O and CO2 and the photocatalyst can be recycled and reused without any loss of activity over four cycles.


Assuntos
Hidróxidos/química , Substâncias Intercalantes/química , Ácidos Naftalenoacéticos/química , Praguicidas/química , Compostos de Tungstênio/química , Compostos de Tungstênio/efeitos da radiação , Alumínio/química , Catálise , Magnésio/química , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...