Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38254843

RESUMO

Ovarian cancer remains a significant challenge, especially in platinum-resistant cases where treatment options are limited. In this study, we investigated the potential of methylene blue (MB) as a metabolic therapy and complementary treatment approach for ovarian cancer. Our findings demonstrated a significant in vivo reduction in the proliferation of TOV112D-based ovarian-cell-line xenografts. In this preclinical study, which used a carboplatin-resistant ovarian cancer tumor model implanted into mice, MB-mediated metabolic therapy exhibited superior tumor slowdown compared to carboplatin treatment alone. This indicates, for the first time, MB's potential as an alternative or adjuvant treatment, especially for resistant cases. Our in vitro study on TOV112D and ARPE-19 sheds light on the impact of such an MB-based metabolic therapy on mitochondrial energetics (respiration and membrane potential). MB showed a modulatory role in the oxygen consumption rate and the mitochondrial membrane potential. These results revealed, for the first time, that MB specifically targets TOV112D mitochondria and probably induces cell apoptosis. The differential response of normal (ARPE-19) and cancer (TOV112D) cells to the MB treatment suggests potential alterations in cancer cell mitochondria, opening avenues for therapeutic approaches that target the mitochondria. Overall, our findings suggest the efficacy of MB as a possible treatment for ovarian cancer and provide valuable insights into the mechanisms underlying the efficacy of methylene blue metabolic therapy in ovarian cancer treatment.

2.
Metabolites ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073567

RESUMO

Tumor cells are known to favor a glycolytic metabolism over oxidative phosphorylation (OxPhos), which takes place in mitochondria, to produce the energy and building blocks essential for cell maintenance and cell growth. This phenotypic property of tumor cells gives them several advantages over normal cells and is known as the Warburg effect. Tumors can be treated as a metabolic disease by targeting their bioenergetics capacity. Alpha-lipoic acid (ALA) and calcium hydroxycitrate (HCA) are two drugs known to target the Warburg effect in tumor cells and hence induce the mitochondria for ATP production. However, tumor cells, known to have an increased flux through glycolysis, are not able to handle the activation of their mitochondria by drugs or any other condition, leading to decoupling of gene regulation. In this study, these drug effects were studied by mimicking an inflammatory condition through the imposition of a hyperosmotic condition in Chinese hamster ovary (CHO) cells, which behave similarly to tumor cells. Indeed, CHO cells grown in high osmolarity conditions, using 200 mM mannitol, showed a pronounced Warburg effect phenotype. Our results show that hyperosmolar conditions triggered high-throughput glycolysis and enhanced glutaminolysis in CHO cells, such as during cancer cell proliferation in inflammatory tissue. Finally, we found that the hyperosmolar condition was correlated with increased mitochondrial membrane potential (ΔΨm) but mitochondrial horsepower seemed to vanish (h = Δp/ΔΨm), which may be explained by mitochondrial hyperfusion.

3.
Sci Rep ; 11(1): 878, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441687

RESUMO

Yarrowia lipolytica is a non-conventional yeast with promising industrial potentials for lipids and citrate production. It is also widely used for studying mitochondrial respiration due to a respiratory chain like those of mammalian cells. In this study we used a genome-scale model (GEM) of Y. lipolytica metabolism and performed a dynamic Flux Balance Analysis (dFBA) algorithm to analyze and identify metabolic levers associated with citrate optimization. Analysis of fluxes at stationary growth phase showed that carbon flux derived from glucose is rewired to citric acid production and lipid accumulation, whereas the oxidative phosphorylation (OxPhos) shifted to the alternative respiration mode through alternative oxidase (AOX) protein. Simulations of optimized citrate secretion flux resulted in a pronounced lipid oxidation along with reactive oxygen species (ROS) generation and AOX flux inhibition. Then, we experimentally challenged AOX inhibition by adding n-Propyl Gallate (nPG), a specific AOX inhibitor, on Y. lipolytica batch cultures at stationary phase. Our results showed a twofold overproduction of citrate (20.5 g/L) when nPG is added compared to 10.9 g/L under control condition (no nPG addition). These results suggest that ROS management, especially through AOX activity, has a pivotal role on citrate/lipid flux balance in Y. lipolytica. All taken together, we thus provide for the first time, a key for the understanding of a predominant metabolic mechanism favoring citrate overproduction in Y. lipolytica at the expense of lipids accumulation.


Assuntos
Ácido Cítrico/metabolismo , Mitocôndrias/metabolismo , Yarrowia/metabolismo , Biomassa , Citratos/metabolismo , Fermentação , Glucose/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/biossíntese , Nitrogênio/metabolismo , Oxirredução
4.
Front Oncol ; 10: 573399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042846

RESUMO

The occurrence of mitochondrial respiration has allowed evolution toward more complex and advanced life forms. However, its dysfunction is now also seen as the most probable cause of one of the biggest scourges in human health, cancer. Conventional cancer treatments such as chemotherapy, which mainly focus on disrupting the cell division process, have shown being effective in the attenuation of various cancers but also showing significant limits as well as serious sides effects. Indeed, the idea that cancer is a metabolic disease with mitochondria as the central site of the pathology is now emerging, and we provide here a review supporting this "novel" hypothesis re-actualizing past century Otto Warburg's thoughts. Our conclusion, while integrating literature, is that mitochondrial activity and, in particular, the activity of cytochrome c oxidase, complex IV of the ETC, plays a fundamental role in the effectiveness or non-effectiveness of chemotherapy, immunotherapy and probably radiotherapy treatments. We therefore propose that cancer cells mitochondrial singlet oxygen (1O2) dynamics may be an efficient target for metabolic therapy development.

5.
Biogerontology ; 21(6): 683-694, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32617766

RESUMO

Alzheimer's disease (AD) and cancer have much in common than previously recognized. These pathologies share common risk factors (inflammation and aging), with similar epidemiological and biochemical features such as impaired mitochondria. Metabolic reprogramming occurs during aging and inflammation. We assume that inflammation is directly responsible of the Warburg effect in cancer cells, with a decreased oxidative phosphorylation and a compensatory highthroughput glycolysis (HTG). Similarly, the Warburg effect in cancer is thought to support an alkaline intracellular pH (pHi), a key component of unrelenting cell growth. In the brain, inflammation results in increased secretion of lactate by astrocytes. The increased uptake of lactic acid by neurons results in the inverse Warburg effect, such as seen in AD. The neuronal activity is dampened by a fall of pHi. Pronounced cytosol acidification results in decreased mitochondrial energy yield as well as apoptotic cell death. The link between AD and cancer is reinforced by the fact that treatment aiming at restoring the mitochondrial activity have been experimentally shown to be effective in both diseases. Low carb diet, lipoic acid, and/or methylene blue could then appear promising in both sets of these clinically diverse diseases.


Assuntos
Doença de Alzheimer , Doenças Metabólicas , Neoplasias , Glicólise , Humanos , Concentração de Íons de Hidrogênio , Fosforilação Oxidativa
6.
PLoS One ; 15(4): e0231770, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298377

RESUMO

The Warburg effect, a hallmark of cancer, has recently been identified as a metabolic limitation of Chinese Hamster Ovary (CHO) cells, the primary platform for the production of monoclonal antibodies (mAb). Metabolic engineering approaches, including genetic modifications and feeding strategies, have been attempted to impose the metabolic prevalence of respiration over aerobic glycolysis. Their main objective lies in decreasing lactate production while improving energy efficiency. Although yielding promising increases in productivity, such strategies require long development phases and alter entangled metabolic pathways which singular roles remain unclear. We propose to apply drugs used for the metabolic therapy of cancer to target the Warburg effect at different levels, on CHO cells. The use of α-lipoic acid, a pyruvate dehydrogenase activator, replenished the Krebs cycle through increased anaplerosis but resulted in mitochondrial saturation. The electron shuttle function of a second drug, methylene blue, enhanced the mitochondrial capacity. It pulled on anaplerotic pathways while reducing stress signals and resulted in a 24% increase of the maximum mAb production. Finally, the combination of both drugs proved to be promising for stimulating Krebs cycle activity and mitochondrial respiration. Therefore, drugs used in metabolic therapy are valuable candidates to understand and improve the metabolic limitations of CHO-based bioproduction.


Assuntos
Anticorpos Monoclonais/biossíntese , Ciclo do Ácido Cítrico/fisiologia , Glicólise/efeitos dos fármacos , Engenharia Metabólica/métodos , Azul de Metileno/farmacologia , Ácido Tióctico/farmacologia , Animais , Células CHO , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Glucose/metabolismo , Glutamina/metabolismo , Glicólise/fisiologia , Ácido Láctico/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Azul de Metileno/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Respiração , Ácido Tióctico/metabolismo
7.
Sci Rep ; 9(1): 3153, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816152

RESUMO

In the recent years, cancer research succeeded with sensitive detection methods, targeted drug delivery systems, and the identification of a large set of genes differently expressed. However, although most therapies are still based on antimitotic agents, which are causing wide secondary effects, there is an increasing interest for metabolic therapies that can minimize side effects. In the early 20th century, Otto Warburg revealed that cancer cells rely on the cytoplasmic fermentation of glucose to lactic acid for energy synthesis (called "Warburg effect"). Our investigations aim to reverse this effect in reprogramming cancer cells' metabolism. In this work, we present a metabolic therapy specifically targeting the activity of specific enzymes of central carbon metabolism, combining the METABLOC bi-therapeutic drugs combination (Alpha Lipoic Acid and Hydroxycitrate) to Metformin and Diclofenac, for treating tumors implanted in mice. Furthermore, a dynamic metabolic model describing central carbon metabolism as well as fluxes targeted by the drugs allowed to simulate tumors progression in both treated and non-treated mice, in addition to draw hypotheses on the effects of the drugs on tumor cells metabolism. Our model predicts metabolic therapies-induced reversed Warburg effect on tumor cells.


Assuntos
Carcinogênese/efeitos dos fármacos , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carbono/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Citratos/farmacologia , Diclofenaco/farmacologia , Glucose/metabolismo , Xenoenxertos , Humanos , Ácido Láctico/metabolismo , Metformina/farmacologia , Camundongos , Ácido Tióctico/farmacologia
8.
Front Physiol ; 9: 94, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541031

RESUMO

Background: Diseases and health conditions have been classified according to anatomical site, etiological, and clinical criteria. Physico-chemical mechanisms underlying the biology of diseases, such as the flow of energy through cells and tissues, have been often overlooked in classification systems. Objective: We propose a conceptual framework toward the development of an energy-oriented classification of diseases, based on the principles of physical chemistry. Methods: A review of literature on the physical chemistry of biological interactions in a number of diseases is traced from the point of view of the fluid and solid mechanics, electricity, and chemistry. Results: We found consistent evidence in literature of decreased and/or increased physical and chemical forces intertwined with biological processes of numerous diseases, which allowed the identification of mechanical, electric and chemical phenotypes of diseases. Discussion: Biological mechanisms of diseases need to be evaluated and integrated into more comprehensive theories that should account with principles of physics and chemistry. A hypothetical model is proposed relating the natural history of diseases to mechanical stress, electric field, and chemical equilibria (ATP) changes. The present perspective toward an innovative disease classification may improve drug-repurposing strategies in the future.

9.
J Cell Mol Med ; 22(2): 738-745, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193856

RESUMO

Currently, the predominant hypothesis explains cellular differentiation and behaviour as an essentially genetically driven intracellular process, suggesting a gene-centrism paradigm. However, although many living species genetic has now been described, there is still a large gap between the genetic information interpretation and cell behaviour prediction. Indeed, the physical mechanisms underlying the cell differentiation and proliferation, which are now known or suspected to guide such as the flow of energy through cells and tissues, have been often overlooked. We thus here propose a complementary conceptual framework towards the development of an energy-oriented classification of cell properties, that is, a mitochondria-centrism hypothesis based on physical forces-driven principles. A literature review on the physical-biological interactions in a number of various biological processes is analysed from the point of view of the fluid and solid mechanics, electricity and thermodynamics. There is consistent evidence that physical forces control cell proliferation and differentiation. We propose that physical forces interfere with the cell metabolism mostly at the level of the mitochondria, which in turn control gene expression. The present perspective points towards a paradigm shift complement in biology.


Assuntos
Fenômenos Biofísicos , Diferenciação Celular , Animais , Proliferação de Células , Campos Eletromagnéticos , Humanos , Mitocôndrias/metabolismo , Osmose
10.
Semin Cancer Biol ; 43: 134-138, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28122260

RESUMO

As stated by Otto Warburg nearly a century ago, cancer is a metabolic disease, a fermentation caused by malfunctioning mitochondria, resulting in increased anabolism and decreased catabolism. Treatment should, therefore, aim at restoring the energy yield. To decrease anabolism, glucose uptake should be reduced (ketogenic diet). To increase catabolism, the oxidative phosphorylation should be restored. Treatment with a combination of α-lipoic acid and hydroxycitrate has been shown to be effective in multiple animal models. This treatment, in combination with conventional chemotherapy, has yielded extremely encouraging results in glioblastoma, brain metastasis and lung cancer. Randomized trials are necessary to confirm these preliminary data. The major limitation is the fact that the combination of α-lipoic acid and hydroxycitrate can only be effective if the mitochondria are still present and/or functional. That may not be the case in the most aggressive tumors. The increased intracellular alkalosis is a strong mitogenic signal, which bypasses most inhibitory signals. Concomitant correction of this alkalosis may be a very effective treatment in case of mitochondrial failure.


Assuntos
Neoplasias/terapia , Oxigênio/metabolismo , Animais , Citratos/administração & dosagem , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/metabolismo , Fosforilação Oxidativa , Ácido Tióctico/administração & dosagem
11.
Front Oncol ; 5: 197, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442209

RESUMO

The pathogenesis of common diseases, such as Alzheimer's disease (AD) and cancer, are currently poorly understood. Inflammation is a common risk factor for cancer and AD. Recent data, provided by our group and from others, demonstrate that increased pressure and inflammation are synonymous. There is a continuous increase in pressure from inflammation to fibrosis and then cancer. This is in line with the numerous papers reporting high interstitial pressure in cancer. But most authors focus on the role of pressure in the lack of delivery of chemotherapy in the center of the tumor. Pressure may also be a key factor in carcinogenesis. Increased pressure is responsible for oncogene activation and cytokine secretion. Accumulation of mechanical stress plays a key role in the development of diseases of old age, such as cardiomyopathy, atherosclerosis, and osteoarthritis. Growing evidence suggest also a possible link between mechanical stress in the pathogenesis of AD. The aim of this review is to describe environmental and endogenous mechanical factors possibly playing a pivotal role in the mechanism of chronic inflammation, AD, and cancer.

12.
Theor Biol Med Model ; 12: 10, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26022743

RESUMO

The different phases of the eukaryotic cell cycle are exceptionally well-preserved phenomena. DNA decompaction, RNA and protein synthesis (in late G1 phase) followed by DNA replication (in S phase) and lipid synthesis (in G2 phase) occur after resting cells (in G0) are committed to proliferate. The G1 phase of the cell cycle is characterized by an increase in the glycolytic metabolism, sustained by high NAD+/NADH ratio. A transient cytosolic acidification occurs, probably due to lactic acid synthesis or ATP hydrolysis, followed by cytosolic alkalinization. A hyperpolarized transmembrane potential is also observed, as result of sodium/potassium pump (NaK-ATPase) activity. During progression of the cell cycle, the Pentose Phosphate Pathway (PPP) is activated by increased NADP+/NADPH ratio, converting glucose 6-phosphate to nucleotide precursors. Then, nucleic acid synthesis and DNA replication occur in S phase. Along with S phase, unpublished results show a cytosolic acidification, probably the result of glutaminolysis occurring during this phase. In G2 phase there is a decrease in NADPH concentration (used for membrane lipid synthesis) and a cytoplasmic alkalinization occurs. Mitochondria hyperfusion matches the cytosolic acidification at late G1/S transition and then triggers ATP synthesis by oxidative phosphorylation. We hypothesize here that the cytosolic pH may coordinate mitochondrial activity and thus the different redox cycles, which in turn control the cell metabolism.


Assuntos
Ciclo Celular , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Carbono/metabolismo , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Mitocôndrias/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...