Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 5(1): 828-838, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36660254

RESUMO

In this work, a series of bio-based epoxy vitrimers were developed by reacting diglycidyl ether of bisphenol A (DGEBA) and bio-based 2,5-furandicarboxylic acid (FDCA) at different molar ratios. Triazabicyclodecene was used as a transesterification catalyst to promote thermally induced exchange reactions. Differential scanning calorimetry, gel content measurements, and Fourier transform infrared spectroscopy were used to study the FDCA-DGEBA crosslinking reaction. The transesterification exchange reaction kinetics of such crosslinked systems was characterized via stress relaxation tests, evidencing an Arrhenius-type dependence of the relaxation time on temperature, and an activation energy of the dynamic rearrangement depending on the molar composition. In addition, self-healing, thermoformability, and mechanical recycling were demonstrated for the composition showing the faster topology rearrangement, namely, the FDCA/DGEBA molar ratio equal to 0.6. This work provides the first example of bio-based epoxy vitrimers incorporating FDCA, making these systems of primary importance in the field of reversible, high-performance epoxy materials for future circular economy scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...