Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Surg Res ; 17(1): 137, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246197

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells have always been a heated research topic in bone tissue regeneration and repair because of their self-renewal and multi-differentiation potential. A large number of studies have been focused on finding the inducing factors that will promote the osteogenic differentiation of bone marrow mesenchymal stem cells. Previous studies have shown that macrophage exosomes or miRNA-26a-5p can make it work, but the function of this kind of substance on cell osteogenic differentiation has not been public. METHODS: M2 macrophages are obtained from IL-4 polarized bone marrow-derived macrophages. Exosomes were isolated from the supernatant of M2 macrophages and identified via transmission electron microscopy (TEM), western blotting, and DLS. Chondrogenic differentiation potential was detected by Alcian blue staining. Oil red O staining was used to detect the potential for lipogenic differentiation. And MTT would detect the proliferative capacity of cells. Western blot was performed to detect differential expression of osteogenic differentiation-related proteins. RESULTS: The results showed that M2 macrophage exosomes will promote bone differentiation and at the same time inhibit lipid differentiation. In addition, M2 macrophage-derived exosomes have the function of promoting the expression of SOX and Aggrecan suppressing the level of MMP13. The exosome inhibitor GW4689 suppresses miRNA-26a-5p in M2 macrophage exosomes, and the treated exosomes do not play an important role in promoting bone differentiation. Moreover, miRNA-26a-5p can enable to promote bone differentiation and inhibit lipid differentiation. miRNA-26a-5p can promote the expression of ALP (alkaline phosphatase), RUNX-2 (Runt-related transcription factor 2), OPN(osteopontin), and Col-2(collagen type II). Therefore, it is speculated that exosomal miRNA-26a-5p is indispensable in osteogenic differentiation. CONCLUSIONS: The present study indicated that M2 macrophage exosomes carrying miRNA-26a-5p can induce osteogenic differentiation of bone marrow-derived stem cells to inhibit lipogenic differentiation, and miRNA-26a-5p will also promote the expression of osteogenic differentiation-related proteins ALP, RUNX-2, OPN, and Col-2.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteogênese/genética , Diferenciação Celular , Humanos , Lipídeos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Biomed Res Int ; 2021: 7218067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926690

RESUMO

Macrophages are commonly classified as M1 macrophages or M2 macrophages. M2 macrophages are obtained by stimulation of IL-4 with anti-inflammatory and tissue repair effects. Exosomes are 30-150 nm lipid bilayer membrane vesicles derived from most living cells and have a variety of biological functions. Previous studies have shown that macrophage exosomes can influence the course of some autoimmune diseases, but their effect on knee osteoarthritis (KOA) has not been reported. Here, we analyze the roles of exosomes derived from M2 macrophage phenotypes in KOA rats. Exosomes were isolated from the supernatant of M2 macrophages and identified via transmission electron microscopy (TEM), Western blotting, and DLS. The results showed that M2 macrophage exosomes significantly attenuated the inflammatory response and pathological damage of articular cartilage in KOA rats. In addition, a key protein associated with KOA including Aggrecan, Col-10, SOX6, and Runx2 was significantly increased, while MMP-13 was significantly suppressed following treatment with M2 macrophage exosomes. The present study indicated that M2 macrophage exosomes exerted protective effects on KOA rats mainly mediated by the PI3K/AKT/mTOR signal pathway. These findings provide a novel approach for the treatment of KOA.


Assuntos
Exossomos/metabolismo , Macrófagos/metabolismo , Osteoartrite do Joelho/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...