Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 252(2): 24, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32676874

RESUMO

MAIN CONCLUSION: The infection of wheat leaves by Pyricularia oryzae induced remarkable reprogramming of the primary metabolism (amino acids, sugars, and organic acids) in favor of a successful fungal infection and certain changes were conserved among cultivars regardless of their level of resistance to blast. Wheat blast, caused by Pyricularia oryzae, has become one of the major threats for food security worldwide. Here, we investigated the behavior of three wheat cultivars (BR-18, Embrapa-16, and BRS-Guamirim), differing in their level of resistance to blast, by analyzing changes in cellular damage, antioxidative metabolism, and defense compounds as well as their photosynthetic performance and metabolite profile. Blast severity was lower by 45 and 33% in Embrapa-16 and BR-18 cultivars (moderately resistant), respectively, at 120 h after inoculation in comparison to BRS-Guamirim cultivar (susceptible). Cellular damage caused by P. oryzae infection was great in BRS-Guamirim compared to BR-18. The photosynthetic performance of infected plants was altered due to diffusional and biochemical limitations for CO2 fixation. At the beginning of the infection process, dramatic changes in both carbohydrate metabolism and on the levels of amino acids, intermediate compounds of the tricarboxylic acid cycle, and polyamines were noticed regardless of cultivar suggesting an extensive metabolic reprogramming of the plants following fungal infection. Nevertheless, Embrapa-16 plants displayed a more robust and efficient antioxidant metabolism, higher phenylalanine ammonia-lyase and polyphenoloxidase activities and higher concentrations of phenolics and lignin, which, altogether, helped them to counteract more efficiently the infection by P. oryzae. Our results demonstrated that P. oryzae infection significantly modified the metabolism of wheat plants and different types of metabolic defence may act both additively and synergistically to provide additional plant protection to blast.


Assuntos
Antioxidantes/metabolismo , Ascomicetos/fisiologia , Dióxido de Carbono/metabolismo , Fotossíntese , Doenças das Plantas/imunologia , Triticum/metabolismo , Metaboloma , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Triticum/imunologia , Triticum/microbiologia
2.
Plant Physiol Biochem ; 140: 43-54, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31078783

RESUMO

- Salinity is a major threat to agriculture. However, depending on the concentration of soluble salts in soil, increased secondary metabolite levels can occur with no major damages to plant growth and development. The phytoecdysteroid (PE) 20-hydroxyecdysone (20E) is a secondary metabolite with biotechnological, medicinal, pharmaceutical and agrochemical applicability. Here, we characterize the responses (growth and physiology) of Pfaffia glomerata under different NaCl concentrations and examine the production of 20E as affected by salinity. Forty-day-old plants grown in greenhouse were exposed to 0, 120, 240, 360 or 480 mM of NaCl for 11 days. Moderate salinity (i.e., 120 mM of NaCl) led to increased 20E concentrations in leaves (47%) relative to the control with no significant effect on photosynthesis and biomass accumulation, thus allowing improved 20E contents on a per whole-plant basis. In contrast, plants under high salinity (i.e., 240-480 mM of NaCl) displayed similar 20E concentrations in leaves compared to the control, but with marked impairments to biomass accumulation and photosynthetic performance (coupled with decreased sucrose and starch levels) in parallel to nutritional imbalance. High salinity also strongly increased salicylic acid levels, antioxidant enzyme activities, and osmoregulatory status. Regardless of stress severity, 20E production was accompanied by the upregulation of Spook and Phantom genes. Our findings suggest that P. glomerata cultivation in moderate salinity soils can be considered as a suitable agricultural option to increase 20E levels, since metabolic and structural complexity that makes its artificial synthesis very difficult.


Assuntos
Panax/metabolismo , Cloreto de Sódio/farmacologia , Biomassa , Ecdisterona/metabolismo , Fotossíntese/efeitos dos fármacos , Salinidade
3.
Physiol Plant ; 167(4): 628-644, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30628091

RESUMO

Fungal pathogens produce toxins that are important for their pathogenesis and/or aggressiveness towards their hosts. Picolinic acid (PA), a non-host selective toxin, causes lesions on rice leaves resembling those originated from Pyricularia oryzae infection. Considering that non-host selective toxins can be useful for plant diseases control, this study investigated whether the foliar spray with PA on wheat (Triticum aestivum L.) plants, in a non-phytotoxic concentration, could increase their resistance to blast, stimulate the anti-oxidative metabolism, and minimize alterations in photosynthesis. The PA spray at concentrations greater than 0.1 mg ml-1 caused foliar lesions, compromised the photosynthesis and was linked with greater accumulation of hydrogen peroxide (H2 O2 ) and superoxide anion radical (O2 •- ). Fungal mycelial growth, conidia production and germination decreased by PA at 0.3 mg ml-1 . Blast severity was significantly reduced by 59 and 23%, respectively, at 72 and 96 h after inoculation for plants sprayed with PA (0.1 mg ml-1 ) at 24 h before fungal inoculation compared to non-sprayed plants. Reduction on blast symptoms was linked with increases on ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), glutathione peroxidase (EC 1.11.1.9), glutathione reductase (EC 1.8.1.7), glutathione-S-transferase (EC 2.5.1.18), peroxidase (EC 1.11.1.7), and superoxide dismutase (EC 1.15.1.1) activities, lower H2 O2 and O2 •- accumulation, reduced malondialdehyde production as well as less impairments to the photosynthetic apparatus. A more efficient antioxidative metabolism that rapidly scavenges the reactive oxygen species generated during P. oryzae infection, without dramatically decreasing the photosynthetic performance, was a remarkable effect obtained with PA spray.


Assuntos
Antioxidantes/metabolismo , Ascomicetos/patogenicidade , Fotossíntese , Ácidos Picolínicos/farmacologia , Triticum/efeitos dos fármacos , Estresse Oxidativo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Triticum/microbiologia
4.
Plant Physiol Biochem ; 121: 196-205, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29128781

RESUMO

Considering the effect of silicon (Si) in reducing the blast symptoms on wheat in a scenario where the losses in the photosynthetic capacity of the infected plants is lowered, this study investigated the ability of using the incident light, the chloroplastidic pigments (chlorophylls and carotenoids) alterations and the possible role of carotenoids on the process of light dissipation on wheat plants non-supplied (-Si) or supplied (+Si) with Si and inoculated or not with Pyricularia oryzae. For + Si plants, blast severity was reduced compared to -Si plants. Reductions in the concentration of photosynthetic pigments (total chlorophyll, violanxanthin + antheraxanthin + zeaxanthin, ß-carotene and lutein) were greater for inoculated -Si plants than for inoculated + Si ones. The α-carotene concentration increased for inoculated -Si and +Si plants in comparison to non-inoculated plants limiting, therefore, lutein production. Higher functional damage to the photosystem II (PSII) was noticed for inoculated -Si plants with reductions in the values of maximum quantum quenching, photochemical yield of PSII and electron transport rate, but higher values for quenching non-photochemical. This finding also contributed to reductions in the values of light saturated rate photosynthesis and light saturation point for -Si plants which was attenuated for inoculated + Si plants. Increase in dark respiration values occurred for inoculated plants than for non-inoculated ones. The Si supply to wheat plants, besides reducing blast severity, contributed to their better photosynthetic performance. Moreover, inoculated + Si plants coped with drastic losses of light energy dissipation processes (fluorescence and heat) by increasing the concentration of carotenoids which helped to maintain the structural and functional viability of the photosynthetic machinery minimizing, therefore, lipid peroxidation and the production of reactive oxygen species.


Assuntos
Fungos Mitospóricos , Doenças das Plantas/microbiologia , Silício/farmacocinética , Triticum , Triticum/metabolismo , Triticum/microbiologia
5.
Phytopathology ; 105(6): 738-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25607719

RESUMO

Rice blast, caused by Pyricularia oryzae, is the most important disease in rice worldwide. This study investigated the effects of silicon (Si) on the photosynthetic gas exchange parameters (net CO2 assimilation rate [A], stomatal conductance to water vapor [gs], internal-to-ambient CO2 concentration ratio [Ci/Ca], and transpiration rate [E]); chlorophyll fluorescence a (Chla) parameters (maximum photochemical efficiency of photosystem II [Fv/Fm], photochemical [qP] and nonphotochemical [NPQ] quenching coefficients, and electron transport rate [ETR]); concentrations of pigments, malondialdehyde (MDA), and hydrogen peroxide (H2O2); and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and lypoxigenase (LOX) in rice leaves. Rice plants were grown in a nutrient solution containing 0 or 2 mM Si (-Si or +Si, respectively) with and without P. oryzae inoculation. Blast severity decreased with higher foliar Si concentration. The values of A, gs and E were generally higher for the +Si plants in comparison with the -Si plants upon P. oryzae infection. The Fv/Fm, qp, NPQ, and ETR were greater for the +Si plants relative to the -Si plants at 108 and 132 h after inoculation (hai). The values for qp and ETR were significantly higher for the -Si plants in comparison with the +Si plants at 36 hai, and the NPQ was significantly higher for the -Si plants in comparison with the +Si plants at 0 and 36 hai. The concentrations of Chla, Chlb, Chla+b, and carotenoids were significantly greater in the +Si plants relative to the -Si plants. For the -Si plants, the MDA and H2O2 concentrations were significantly higher than those in the +Si plants. The LOX activity was significantly higher in the +Si plants than in the -Si plants. The SOD and GR activities were significantly higher for the -Si plants than in the +Si plants. The CAT and APX activities were significantly higher in the +Si plants than in the -Si plants. The supply of Si contributed to a decrease in blast severity, improved the gas exchange performance, and caused less dysfunction at the photochemical level.


Assuntos
Ascomicetos/fisiologia , Oryza/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Doenças das Plantas/imunologia , Transpiração Vegetal/efeitos dos fármacos , Silício/farmacologia , Clorofila/metabolismo , Clorofila A , Fluorescência , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oryza/microbiologia , Oryza/fisiologia , Estresse Oxidativo , Complexo de Proteína do Fotossistema II/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia
6.
Phytopathology ; 105(2): 180-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25163009

RESUMO

This study was intended to analyze the photosynthetic performance of rice leaf blades infected with Monographella albescens by combining chlorophyll (Chl) a fluorescence images with gas exchange and photosynthetic pigment pools. The net CO2 assimilation rate, stomatal conductance, transpiration rate, total Chl and carotenoid pools, and Chl a/b ratio all decreased but the internal CO2 concentration increased in the inoculated plants compared with their noninoculated counterparts. The first detectable changes in the images of Chl a fluorescence from the leaves of inoculated plants were already evident at 24 h after inoculation (hai) and increased dramatically as the leaf scald lesions expanded. However, these changes were negligible for the photosystem II photochemical efficiency (Fv/Fm) at 24 hai, in contrast to other Chl fluorescence traits such as the photochemical quenching coefficient, yield of photochemistry, and yield for dissipation by downregulation; which, therefore, were much more sensitive than the Fv/Fm ratio in assessing the early stages of fungal infection. It was also demonstrated that M. albescens was able to impair the photosynthetic process in both symptomatic and asymptomatic leaf areas. Overall, it was proven that Chl a fluorescence imaging is an excellent tool to describe the loss of functionality of the photosynthetic apparatus occurring in rice leaves upon infection by M. albescens.


Assuntos
Ascomicetos/fisiologia , Oryza/fisiologia , Fotossíntese/fisiologia , Doenças das Plantas/microbiologia , Transpiração Vegetal/fisiologia , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A , Fluorescência , Interações Hospedeiro-Patógeno , Oryza/citologia , Oryza/microbiologia , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia
7.
Phytopathology ; 104(11): 1183-91, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24805073

RESUMO

Frogeye leaf spot, caused by Cercospora sojina, is one of the most important leaf diseases of soybean worldwide. Silicon (Si) is known to increase the resistance of several plant species to pathogens. The cultivars Bossier and Conquista, which are susceptible and resistant, respectively, to frogeye leaf spot, supplied and nonsupplied with Si were examined for the activities of defense enzymes and the concentrations of total soluble phenolics (TSP) and lignin-thioglycolic acid (LTGA) derivatives at 8, 14, and 16 days after inoculation (dai) with C. sojina. The importance of cell wall degrading enzymes (CWDE) to the infection process of C. sojina and the effect of Si on their activities were also determined. Soybean plants were grown in hydroponic culture containing either 0 or 2 mM Si (-Si and +Si, respectively) and noninoculated or C. sojina inoculated. Severity of frogeye leaf spot was higher in cultivar Bossier plants than cultivar Conquista and also in the +Si plants compared with their -Si counterparts. Except for the concentrations of TSP and LTGA derivatives, activities of defense enzymes and the CWDE did not change for +Si noninoculated plants regardless of the cultivar. The activities of lipoxygenases, phenylalanine ammonia-lyases, chitinases, and polyphenoloxidases as well as the activities of CWDE decreased for the +Si inoculated plants. The results from this study demonstrated that defense enzyme activities decreased in soybean plants supplied with Si, which compromised resistance to C. sojina infection.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/efeitos dos fármacos , Glycine max/efeitos dos fármacos , Doenças das Plantas/imunologia , Silício/efeitos adversos , Catecol Oxidase/metabolismo , Quitinases/metabolismo , Lignina/metabolismo , Lipoxigenases/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Glycine max/imunologia , Glycine max/microbiologia
8.
Plant Cell Environ ; 37(4): 978-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24117476

RESUMO

Worldwide measurements of nearly 130 C3 species covering all major plant functional types are analysed in conjunction with model simulations to determine the effects of mesophyll conductance (g(m)) on photosynthetic parameters and their relationships estimated from A/Ci curves. We find that an assumption of infinite g(m) results in up to 75% underestimation for maximum carboxylation rate V(cmax), 60% for maximum electron transport rate J(max), and 40% for triose phosphate utilization rate T(u) . V(cmax) is most sensitive, J(max) is less sensitive, and T(u) has the least sensitivity to the variation of g(m). Because of this asymmetrical effect of g(m), the ratios of J(max) to V(cmax), T(u) to V(cmax) and T(u) to J(max) are all overestimated. An infinite g(m) assumption also limits the freedom of variation of estimated parameters and artificially constrains parameter relationships to stronger shapes. These findings suggest the importance of quantifying g(m) for understanding in situ photosynthetic machinery functioning. We show that a nonzero resistance to CO2 movement in chloroplasts has small effects on estimated parameters. A non-linear function with gm as input is developed to convert the parameters estimated under an assumption of infinite gm to proper values. This function will facilitate gm representation in global carbon cycle models.


Assuntos
Gases/metabolismo , Células do Mesofilo/fisiologia , Fotossíntese , Simulação por Computador , Transporte de Elétrons , Cinética , Fosfatos/metabolismo
9.
Phytopathology ; 104(2): 143-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24047250

RESUMO

This study investigated the effect of silicon (Si) on the photosynthetic gas exchange parameters (net CO2 assimilation rate [A], stomatal conductance to water vapor [gs], internal CO2 concentration [Ci], and transpiration rate [E]) and chlorophyll fluorescence a parameters (maximum quantum quenching [Fv/Fm and Fv'/Fm'], photochemical [qP] and nonphotochemical [NPQ] quenching coefficients, and electron transport rate [ETR]) in wheat plants grown in a nutrient solution containing 0 mM (-Si) or 2 mM (+Si) Si and noninoculated or inoculated with Pyricularia oryzae. Blast severity decreased due to higher foliar Si concentration. For the inoculated +Si plants, A, gs, and E were significantly higher in contrast to the inoculated -Si plants. For the inoculated +Si plants, significant differences of Fv/Fm between the -Si and +Si plants occurred at 48, 96, and 120 h after inoculation (hai) and at 72, 96, and 120 hai for Fv'/Fm'. The Fv/Fm and Fv'/Fm', in addition to total chlorophyll concentration (a + b) and the chlorophyll a/b ratio, significantly decreased in the -Si plants compared with the +Si plants. Significant differences between the -Si and +Si inoculated plants occurred for qP, NPQ, and ETR. The supply of Si contributed to decrease blast severity in addition to improving gas exchange performance and causing less dysfunction at the photochemical level.


Assuntos
Dióxido de Carbono/metabolismo , Magnaporthe/fisiologia , Doenças das Plantas/microbiologia , Transpiração Vegetal/efeitos dos fármacos , Silício/farmacologia , Triticum/fisiologia , Clorofila/metabolismo , Clorofila A , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/microbiologia , Estômatos de Plantas/fisiologia , Silício/análise , Silício/metabolismo , Triticum/efeitos dos fármacos , Triticum/microbiologia
10.
Phytopathology ; 104(1): 34-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23901830

RESUMO

Blast, caused by Pyricularia oryzae, has become an economically important disease in wheat in Brazil, but little effort has been devoted to understanding the wheat-P. oryzae interaction. This study was intended to determine the effects of P. oryzae infection on the photosynthetic process in wheat plants using a susceptible (BR 18) and a partially resistant cultivar (BRS 229). It was found that the net carbon assimilation rate (A), stomatal conductance (gs), and transpiration rate were dramatically reduced in both cultivars due to P. oryzae infection but to a lesser degree in BRS 229. Photosynthesis was impaired in asymptomatic leaf tissues, indicating that blast severity is not an acceptable indicator for predicting P. oryzae-induced reductions in A. The proportionally larger decreases in A than in gs, in parallel with increases in internal CO2 concentration (Ci), suggest that the lower influx of CO2 into the diseased leaves caused by stomatal closure was not a prominent factor associated with the reduction in A. Additional support for this conclusion comes from the nonsignificant correlation between A and gs, the negative correlation between A and Ci and the positive correlation between blast severity and Ci. Both the maximum rate of carboxylation and the maximum rate of electron transport were dramatically depressed at advanced stages of P. oryzae infection, mainly in BR 18, although the reduction in A was not closely related to the decrease in the electron transport rate. In conclusion, biochemical limitations likely related to the reduced activity of Rubisco, rather than diffusive limitations, were the main factor associated with decreases in A during the infection process of P. oryzae on wheat leaves.


Assuntos
Magnaporthe/fisiologia , Fotossíntese/fisiologia , Doenças das Plantas/microbiologia , Transpiração Vegetal/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Triticum/fisiologia , Carbono/metabolismo , Interações Hospedeiro-Patógeno , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/microbiologia , Estômatos de Plantas/fisiologia , Triticum/microbiologia
11.
Phytopathology ; 102(9): 892-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22671024

RESUMO

Considering the economic importance of anthracnose, caused by Colletotrichum sublineolum, and silicon (Si) to enhance sorghum resistance against this disease, this study aimed to investigate the effect of this element on leaf gas exchange and also the antioxidative system when infected by C. sublineolum. Plants from sorghum line CMSXS142 (BR 009 [Tx623] - Texas), growing in hydroponic culture with (+Si, 2 mM) or without (-Si) Si, were inoculated with C. sublineolum. Disease severity was assessed at 2, 4, 6, 8, and 10 days after inoculation (dai) and data were used to calculate the area under anthracnose progress curve (AUAPC). Further, the net carbon assimilation rate (A), stomatal conductance to water vapor (g(s)), internal-to-ambient CO2 concentration ratio (C(i)/C(a)), and transpiration rate (E); the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR); the electrolyte leakage (EL), and the concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were determined. The AUAPC was reduced by 86% for the +Si plants compared with the -Si plants. The values of A, g(s), and E were lower upon inoculation of -Si plants in contrast to inoculated +Si plants with decreases of 31 and 60% for A, 34 and 61% for g(s), and 27 and 57% for E, respectively, at 4 and 8 dai. For the noninoculated plants, there was no significant difference between the -Si and +Si treatments for the values of A, g(s), and E. The C(i)/C(a) ratio was similar between the -Si and +Si treatments, regardless of the pathogen inoculation. The activities of SOD, CAT, APX, and GR tended to be higher in the +Si plants compared with the -Si plants upon inoculation with C. sublineolum. The EL significantly increased for -Si plants compared with +Si plants. The MDA concentration significantly increased by 31 and 38% at 4 and 8 dai, respectively, for the -Si plants compared with the +Si plants. Based on these results, Si may have a positive effect on sorghum physiology when infected by C. sublineolum through the maintenance of carbon fixation and also by enhancing the antioxidant system, which resulted in an increase in reactive oxygen species scavenging and, ultimately, reduced damage to the cell membranes.


Assuntos
Colletotrichum/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Silício/farmacologia , Sorghum/metabolismo , Peróxido de Hidrogênio , Peroxidação de Lipídeos , Estresse Oxidativo , Sorghum/microbiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...