Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 21(5): 1366-1380, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36738826

RESUMO

BACKGROUND: Vascular activation is characterized by increased proinflammatory, pro thrombotic, and proadhesive signaling. Several chronic and acute conditions, including Bcr-abl-negative myeloproliferative neoplasms (MPNs), graft-vs-host disease, and COVID-19 have been noted to have increased activation of the janus kinase (JAK)-signal transducer and downstream activator of transcription (STAT) pathways. Two notable inhibitors of the JAK-STAT pathway are ruxolitinib (JAK1/2 inhibitor) and fedratinib (JAK2 inhibitor), which are currently used to treat MPN patients. However, in some conditions, it has been noted that JAK inhibitors can increase the risk of thromboembolic complications. OBJECTIVES: We sought to define the anti-inflammatory and antithrombotic effects of JAK-STAT inhibitors in vascular endothelial cells. METHODS: We assessed endothelial activation in the presence or absence of ruxolitinib or fedratinib by using immunoblots, immunofluorescence, qRT-PCR, and function coagulation assays. Finally, we used endothelialized microfluidics perfused with blood from normal and JAK2V617F+ individuals to evaluate whether ruxolitinib and fedratinib changed cell adhesion. RESULTS: We found that both ruxolitinib and fedratinib reduced endothelial cell phospho-STAT1 and STAT3 signaling and attenuated nuclear phospho-NK-κB and phospho-c-Jun localization. JAK-STAT inhibition also limited secretion of proadhesive and procoagulant P-selectin and von Willebrand factor and proinflammatory IL-6. Likewise, we found that JAK-STAT inhibition reduced endothelial tissue factor and urokinase plasminogen activator expression and activity. CONCLUSIONS: By using endothelialized microfluidics perfused with whole blood samples, we demonstrated that endothelial treatment with JAK-STAT inhibitors prevented rolling of both healthy control and JAK2V617F MPN leukocytes. Together, these findings demonstrate that JAK-STAT inhibitors reduce the upregulation of critical prothrombotic pathways and prevent increased leukocyte-endothelial adhesion.


Assuntos
COVID-19 , Janus Quinases , Humanos , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Transdução de Sinais , Células Endoteliais/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Janus Quinase 2 , Leucócitos/metabolismo
2.
Small ; 18(21): e2200883, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35451204

RESUMO

Cellular mechanics encompass both mechanical properties that resist forces applied by the external environment and internally generated forces applied at the location of cell-cell and cell-matrix junctions. Here, the authors demonstrate that microindentation of cellular domes formed by cell monolayers that locally lift off the substrate provides insight into both aspects of cellular mechanics in multicellular structures. Using a modified Hertz contact equation, the force-displacement curves generated by a micro-tensiometer are used to measure an effective dome stiffness. The results indicate the domes are consistent with the Laplace-Young relationship for elastic membranes, regardless of biochemical modulation of the RhoA-ROCK signaling axis. In contrast, activating RhoA, and inhibiting ROCK both alter the relaxation dynamics of the domes deformed by the micro-tensiometer, revealing an approach to interrogate the role of RhoA-ROCK signaling in multicellular mechanics. A finite element model incorporating a Mooney-Rivlin hyperelastic constitutive equation to describe monolayer mechanics predicts effective stiffness values that are consistent with the micro-tensiometer measurements, verifying previous measurements of the response of cell monolayers to tension. Overall, these studies establish microindentation of fluid-filled domes as an avenue to investigate the contribution of cell-generated forces to the mechanics of multicellular structures.


Assuntos
Transdução de Sinais
3.
Sci Rep ; 9(1): 2190, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778117

RESUMO

Regulating the intrinsic interactions between blood vessels and nerve cells has the potential to enhance repair and regeneration of the central nervous system. Here, we evaluate the efficacy of aligned microvessels to induce and control directional axon growth from neural progenitor cells in vitro and host axons in a rat spinal cord injury model. Interstitial fluid flow aligned microvessels generated from co-cultures of cerebral-derived endothelial cells and pericytes in a three-dimensional scaffold. The endothelial barrier function was evaluated by immunostaining for tight junction proteins and quantifying the permeability coefficient (~10-7 cm/s). Addition of neural progenitor cells to the co-culture resulted in the extension of Tuj-positive axons in the direction of the microvessels. To validate these findings in vivo, scaffolds were transplanted into an acute spinal cord hemisection injury with microvessels aligned with the rostral-caudal direction. At three weeks post-surgery, sagittal sections indicated close alignment between the host axons and the transplanted microvessels. Overall, this work demonstrates the efficacy of exploiting neurovascular interaction to direct axon growth in the injured spinal cord and the potential to use this strategy to facilitate central nervous system regeneration.


Assuntos
Orientação de Axônios/fisiologia , Regeneração Nervosa/fisiologia , Animais , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Feminino , Regeneração Tecidual Guiada , Técnicas In Vitro , Microvasos/crescimento & desenvolvimento , Microvasos/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Ratos , Ratos Sprague-Dawley , Medula Espinal/irrigação sanguínea , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...