Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(49): 14491-14499, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34851639

RESUMO

Due to the compact two-dimensional interlayer pore space and the high density of interlayer molecular adsorption sites, clay minerals are competitive adsorption materials for carbon dioxide capture. We demonstrate that with a decreasing interlayer surface charge in a clay mineral, the adsorption capacity for CO2 increases, while the pressure threshold for adsorption and swelling in response to CO2 decreases. Synthetic nickel-exchanged fluorohectorite was investigated with three different layer charges varying from 0.3 to 0.7 per formula unit of Si4O10F2. We associate the mechanism for the higher CO2 adsorption with more accessible space and adsorption sites for CO2 within the interlayers. The low onset pressure for the lower-charge clay is attributed to weaker cohesion due to the attractive electrostatic forces between the layers. The excess adsorption capacity of the clay is measured to be 8.6, 6.5, and 4.5 wt % for the lowest, intermediate, and highest layer charges, respectively. Upon release of CO2, the highest-layer charge clay retains significantly more CO2. This pressure hysteresis is related to the same cohesion mechanism, where CO2 is first released from the edges of the particles thereby closing exit paths and trapping the molecules in the center of the clay particles.

2.
Adv Mater ; 32(47): e2005567, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33079426

RESUMO

Living organisms use musculatures with spatially distributed anisotropic structures to actuate deformations and locomotion with fascinating functions. Replicating such structural features in artificial materials is of great significance yet remains a big challenge. Here, a facile strategy is reported to fabricate hydrogels with elaborate ordered structures of nanosheets (NSs) oriented under a distributed electric field. Multiple electrodes are distributed with various arrangements in the precursor solution containing NSs and gold nanoparticles. A complex electric field induces sophisticated orientations of the NSs that are permanently inscribed by subsequent photo-polymerization. The resultant anisotropic nanocomposite poly(N-isopropylacrylamide) hydrogels exhibit rapid deformation upon heating or photoirradiation, owing to the fast switching of permittivity of the media and electric repulsion between the NSs. The complex alignments of NSs and anisotropic shape change of discrete regions result in programmed deformation of the hydrogels into various configurations. Furthermore, locomotion is realized by a spatiotemporal light stimulation that locally triggers time-variant shape change of the composite hydrogel with complex anisotropic structures. Such a strategy on the basis of the distributed electric-field-generated ordered structures should be applicable to gels, elastomers, and thermosets loaded with other anisotropic particles or liquid crystals, for the design of biomimetic/bioinspired materials with specific functionalities.


Assuntos
Eletricidade , Hidrogéis/química , Nanoestruturas/química , Nanotecnologia , Resinas Acrílicas/química , Ouro/química , Nanopartículas Metálicas/química
3.
Nat Commun ; 11(1): 5166, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33056999

RESUMO

Many creatures have the ability to traverse challenging environments by using their active muscles with anisotropic structures as the motors in a highly coordinated fashion. However, most artificial robots require multiple independently activated actuators to achieve similar purposes. Here we report a hydrogel-based, biomimetic soft robot capable of multimodal locomotion fueled and steered by light irradiation. A muscle-like poly(N-isopropylacrylamide) nanocomposite hydrogel is prepared by electrical orientation of nanosheets and subsequent gelation. Patterned anisotropic hydrogels are fabricated by multi-step electrical orientation and photolithographic polymerization, affording programmed deformations. Under light irradiation, the gold-nanoparticle-incorporated hydrogels undergo concurrent fast isochoric deformation and rapid increase in friction against a hydrophobic substrate. Versatile motion gaits including crawling, walking, and turning with controllable directions are realized in the soft robots by dynamic synergy of localized shape-changing and friction manipulation under spatiotemporal light stimuli. The principle and strategy should merit designing of continuum soft robots with biomimetic mechanisms.


Assuntos
Biomimética/métodos , Locomoção , Nanogéis/química , Robótica/métodos , Fricção , Músculo Esquelético/fisiologia
4.
Langmuir ; 34(28): 8215-8222, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29924623

RESUMO

Delamination by osmotic swelling of layered materials is generally thought to become increasingly difficult, if not impossible, with increasing layer charge density because of strong Coulomb interactions. Nevertheless, for the class of 2:1 layered silicates, very few examples of delaminating organo-vermiculites were reported in literature. We propose a mechanism for this repulsive osmotic swelling of highly charged vermiculites based on repulsive counterion translational entropy that dominates the interaction of adjacent layers above a certain threshold separation. Based on this mechanistic insight, we were able to identify several organic interlayer cations appropriate to delaminate highly charged, vermiculite-type clay minerals. These findings suggest that the osmotic swelling of highly charged organoclays is a generally applicable phenomenon rather than the odd exemption.

5.
RSC Adv ; 8(50): 28797-28803, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35548394

RESUMO

To date delamination of organo-clays is restricted to highly charged, vermiculite-type layered silicates (e.g. n-butylammonium vermiculites) while - counterintuitively - low charged, smectite-type layered silicates do not delaminate although their Coulomb interactions are much weaker. Guided by previous findings, we now identified organo-cations that allowed for extending the delamination of organo clays to charge densities in the regime of low charged smectites as well. Upon intercalation of protonated amino-sugars like N-methyl-d-glucamine (meglumine) robust delamination of 2 : 1 layered silicates via repulsive osmotic swelling in water is achieved. This process is stable over a wide range of charge densities spanning from smectites (layer charge x ∼ 0.3 charges per formula unit Si4O10F2, p.f.u.) to vermiculites (x ∼ 0.7 p.f.u.). It is evidenced that a combination of first, a sufficiently large charge equivalent area (bulkiness) of meglumine with second, a significant hydrophilicity of meglumine leads to swelling above a threshold d-spacing of ≳17.5 Šin moist air (98% r.h.). Hereby, electrostatic attraction is critically weakened, causing the onset of repulsive osmotic swelling which leads to utter delamination. Moreover, meglumine renders delamination tolerant to charge heterogeneities typically found in natural and synthetic clays.

6.
Langmuir ; 33(19): 4816-4822, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28452487

RESUMO

Because of strong Coulomb interactions, the delamination of charged layered materials becomes progressively more difficult with increasing charge density. For instance, highly charged sodium fluorohectorite (Na0.6Mg2.4Li0.6Si4O10F2, Na-Hec) cannot be delaminated directly by osmotic swelling in water because its layer charge exceeds the established limit for osmotic swelling of 0.55 per formula unit Si4O10F2. Quite surprisingly, we found that this hectorite at the border of the smectite and vermiculite group can, however, be utterly delaminated into 1-nm-thick platelets with a high aspect ratio (24 000) in a two-step process. The hectorite is first converted by partial ion exchange into a one-dimensionally ordered, interstratified heterostructure with strictly alternating Na+ and n-butylammonium (C4) interlayers. This heterostructure then spontaneously delaminates into uniform single layers upon immersion in water whereas neither of the homoionic phases (Na-Hec and C4-Hec) swells osmotically. The delamination of more highly charged synthetic layered silicates is a key step to push the aspect ratio beyond the current limits.

7.
ACS Appl Mater Interfaces ; 8(38): 25535-43, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27603150

RESUMO

Nature reveals a great variety of inorganic-organic composite materials exhibiting good mechanical properties, high thermal and chemical stability, and good barrier properties. One class of natural bio-nanocomposites, e.g. found in mussel shells, comprises protein matrices with layered inorganic fillers. Inspired by such natural bio-nanocomposites, the cationic recombinant spider silk protein eADF4(κ16) was processed together with the synthetic layered silicate sodium hectorite in an all-aqueous setup. Drop-casting of this bio-nanocomposite resulted in a thermally and chemically stable film reflecting a one-dimensional crystal. Surprisingly, this bio-nanocomposite coating was, though produced in an all-aqueous process, completely water insoluble. Analyzing the structural details showed a low inner free volume due to the well-oriented self-assembly/alignment of the spider silk proteins on the nanoclay surface, yielding high oxygen and water vapor barrier properties. The here demonstrated properties in combination with good biocompatibility qualify this new bio-nanocomposite to be used in packaging applications.


Assuntos
Seda/química , Nanocompostos , Vapor , Volatilização , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...