Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200021

RESUMO

The aim of this study was to assess the one year clinical performance of a new application method, the Fast-Modelling Bulk Technique (FMBT), in comparison to the Composite-Up Layering Technique (CULT) in posterior cavities. Thirty patients with two class I cavities on permanent human molars were enrolled in the present study. A total of sixty class I cavities were prepared and randomly divided according to the restoration technique used: 30 cavities restored by incremental layering technique and modelling of the last layer with Composite-Up Technique (CUT) using the composite Filtek Z250XT (3M ESPE; St. Paul, MN, USA) and the other 30 restored by Bulk Filling technique and modelling of the last layer by Fast-Modelling Technique (FMT) using the composite Filtek Bulk Fill Posterior Restorative (3M ESPE; St. Paul, MN, USA). Restorations were evaluated for up to one year by two observers according to Federation Dentaire Internationale (FDI) criteria, through clinical and radiological exams. Exact Fisher tests were used for statistical analysis. (p ≤ 0.05). From a biological perspective, at baseline, teeth restored with both techniques did not reveal any postoperative sensitivity. However, with time, FMBT showed less postoperative sensitivity and therefore more desirable results than CULT with a nonsignificant difference after one year (p > 0.05). Concerning secondary caries, fracture of the material, and marginal adaptation, no significant difference was noted between both techniques (p > 0.05). Regarding marginal staining, CULT resulted in more staining with a significant difference, as compared to FMBT (p < 0.05). Upon radiological examination, FMBT showed a good marginal fit during the first year, whereas CULT showed small empty voids from baseline with a nonsignificant difference (p = 1.00). After one year of clinical function, both techniques showed promising results. The present study indicates that the new FMBT could have a positive effect on the marginal staining of resin composite.

2.
Materials (Basel) ; 13(12)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549198

RESUMO

This in vitro study aims to evaluate whether a solution of 10% sodium ascorbate (SA) may exert a beneficial effect on the bonding of composite to enamel after using different bleaching agents and protocols. Microtensile bond strength (µTBS) was evaluated on 72 freshly extracted human central incisors, divided into eight experimental groups and one control group (total n = 9): Group 1 serves as control (nonbleached). Group 2 was bleached with 5% carbamide peroxide. Group 3 was bleached with 5% carbamide peroxide and then treated with 10% SA. Group 4 was bleached with 10% carbamide peroxide. Group 5 was bleached with 10% carbamide peroxide, then treated with 10% SA. Group 6 was bleached with 16% carbamide peroxide. Group 7 was bleached with 16% carbamide peroxide, then treated with 10% SA. Group 8 was bleached with 6% hydrogen peroxide. Group 9 was bleached with 6% hydrogen peroxide, then treated with 10% SA. All groups were restored immediately after the different treatments using a resin composite. The µTBS values were measured using a universal testing machine and statistical analysis was performed by means of normality and variance analyses, SIDAK test for univariate test and multiple comparisons, and Student test to compare µTBS values of each group with the control. The mean µTBS values in groups 2, 4, 6, 8 were significantly lower than controls. For groups 3, 5, 7, 9, subjected to antioxidant (10% SA) application, all µTBS values increased significantly. However, only for Groups 3 and 5 there was no significant difference with the control. Applying 10% SA for 10 min may improve the bond strength composite/bleached enamel just when whitening is performed with 5% and 10% carbamide peroxide.

3.
J Gerontol A Biol Sci Med Sci ; 74(9): 1375-1385, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30329021

RESUMO

The key objective of this work was to investigate the impact of young and old human lymphocyte secretomes on C2C12 myoblasts regeneration. Conditioned media were harvested from isolated young and older lymphocytes treated with (activated [AC]) or without (nonactivated [NA]), anti-CD3/CD28 activators for 4 days. AC conditioned media from older lymphocytes had decreased levels of amphiregulin (367 ± 208 pg/mL vs 904 ± 323 pg/mL; p = .018) and IGF-I (845 ± 88 ng/mL vs 1100 ± 48 ng/mL; p = .032) compared with younger AC lymphocytes. AC older versus younger lymphocytes had reduced expression of CD25 (24.6 ± 5.5%; p = .0003) and increased expression of FoxP3 (35 ± 15.7%; p = .032). Treatment of C2C12 myoblasts with young AC lymphocytes resulted in decreased expression of MyoD (0.46 ± 0.12; p =.004) and Myogenin (0.34 ± 0.05; p = .010) mRNA, increased activation of MEk1 (724 ± 140 mean fluorescent intensity [MFI]; p =.001) and ERK1/2 (3768 ± 314 MFI; p =.001), and a decreased activation of Akt (74.5 ± 4 MFI; p = .009) and mTOR (61.8 ± 7 MFI; p = .001) compared with old AC lymphocytes. By contrast, C2C12 myoblasts treated with older AC lymphocytes displayed increased expression of MyoD (0.7 ± 0.08; p =.004) and Myogenin (0.68 ± 0.05; p =.010) mRNA, decreased phosphorylation of MEk1 and ERK1/2 (528 ± 80 MFI; p = .008, and 1141 ± 668 MFI; p = .001, respectively), and increased Akt/mTOR activation (171 ± 35 MFI; p = .009, and 184 ± 33 MFI; p = .001, respectively). These data provide new evidence that differences between older and younger lymphocyte secretomes contribute to differential responses of C2C12 myoblasts in culture.


Assuntos
Proliferação de Células/fisiologia , Mioblastos/citologia , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Fatores Biológicos/metabolismo , Células Cultivadas , Humanos , Ativação Linfocitária , Masculino , Adulto Jovem
4.
Ageing Res Rev ; 27: 67-76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27039885

RESUMO

Ageing is characterised by progressive deterioration of physiological systems and the loss of skeletal muscle mass is one of the most recognisable, leading to muscle weakness and mobility impairments. This review highlights interactions between the immune system and skeletal muscle stem cells (widely termed satellite cells or myoblasts) to influence satellite cell behaviour during muscle regeneration after injury, and outlines deficits associated with ageing. Resident neutrophils and macrophages in skeletal muscle become activated when muscle fibres are damaged via stimuli (e.g. contusions, strains, avulsions, hyperextensions, ruptures) and release high concentrations of cytokines, chemokines and growth factors into the microenvironment. These localised responses serve to attract additional immune cells which can reach in excess of 1×10(5) immune cell/mm(3) of skeletal muscle in order to orchestrate the repair process. T-cells have a delayed response, reaching peak activation roughly 4 days after the initial damage. The cytokines and growth factors released by activated T-cells play a key role in muscle satellite cell proliferation and migration, although the precise mechanisms of these interactions remain unclear. T-cells in older people display limited ability to activate satellite cell proliferation and migration which is likely to contribute to insufficient muscle repair and, consequently, muscle wasting and weakness. If the factors released by T-cells to activate satellite cells can be identified, it may be possible to develop therapeutic agents to enhance muscle regeneration and reduce the impact of muscle wasting during ageing and disease.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/imunologia , Músculo Esquelético/fisiologia , Regeneração/imunologia , Sarcopenia/imunologia , Células Satélites de Músculo Esquelético/fisiologia , Humanos
5.
Physiol Rep ; 3(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26603449

RESUMO

Older people experience skeletal muscle wasting, in part due to impaired proliferative capacity of quiescent skeletal muscle satellite cells which can be reversed by exposure to young blood. To investigate the role of immune cells in muscle regeneration, we isolated lymphocytes from whole blood of young and older healthy volunteers and cultured them with, or without, anti-CD3/CD28 activators to induce release of cytokines, interleukins, and growth factors into the media. The secreted proteins were collected to prepare a conditioned media, which was subsequently used to culture C2C12 myoblasts. The conditioned media from the activated young lymphocytes increased the rate of proliferation of myoblasts by around threefold (P < 0.005) and caused an approximate fourfold (P < 0.005) increase in migration compared with nonactivated lymphocyte control media. These responses were characterized by minimal myotube formation (2%), low fusion index (5%), low myosin heavy chain content, and substantial migration. In contrast, myoblasts treated with conditioned media from activated old lymphocytes exhibited a high degree of differentiation, and multi-nucleated myotube formation that was comparable to control conditions, thus showing no effect on proliferation or migration of myoblasts. These results indicate that secreted proteins from lymphocytes of young people enhance the muscle cell proliferation and migration, whereas secreted proteins from lymphocytes of older people may contribute to the attenuated skeletal muscle satellite cell proliferation and migration.

6.
Cell Physiol Biochem ; 33(1): 117-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24481011

RESUMO

BACKGROUND/AIMS: ageing is associated with a marked decline in immune function which may contribute to the local environment that can influence the regenerative process of skeletal muscle cells. METHODS: Herein, we focused on determining the effect of an activated immune system secretome on myoblast differentiation and proliferation as possible means to attenuate adverse effects of muscle aging. C2C12 myoblasts were used as model to assess the impact of lymphocyte conditioned media (CM) following anti-CD3/IL-2 activation. RESULTS: Myoblasts cultured with activated lymphocytes CM exhibited reduced morphological and biochemical differentiation (98±20, p<0.005) and increased entry to the S Phase of the cell cycle (61%±7, p<0.001), when compared with myoblasts cultured with non-activated lymphocytes CM. Associated with increased proliferation and reduced differentiation, muscle specific transcription factors MyoD and myogenin were significantly reduced in C2C12 treated with activated lymphocytes CM vs control CM, respectively (myoD: 0.5±0.12 fold reduction P<0.005); myogenin: 0.38±0.08 fold reduction; p<0.005). Moreover, key protein of proliferation pERK1/2 increased (46±11U/ml, p<0.05) whereas mediator of differentiation pAkt decreased (21±12U/ml, p<0.05) in C2C12 treated with activated vs. non-activated CM. CONCLUSION: our data demonstrate that, following activation, secretome of the immune system cells elicit marked regulatory effects on skeletal muscle growth and differentiation; enhancing the former with the loss of the latter.


Assuntos
Diferenciação Celular , Ativação Linfocitária , Linfócitos/metabolismo , Mioblastos/citologia , Adulto , Animais , Ciclo Celular , Linhagem Celular , Proliferação de Células , Forma Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...