Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35208667

RESUMO

The exploration of certain microbial resources such as beneficial endophytic microorganisms is considered a promising strategy for the discovery of new antimicrobial compounds for the pharmaceutical industries and agriculture. Thirty-one endophytic bacterial strains affiliated with Bacillus, Janthinobacterium, Yokenella, Enterobacter, Pseudomonas, Serratia, and Microbacterium were previously isolated from vetiver (Chrysopogon zizanioides (L.) Roberty) roots. These endophytes showed antifungal activity against Fusarium graminearum and could be a source of antimicrobial metabolites. In this study, in particular, using high-throughput screening, we analyzed their antagonistic activities and those of their cell-free culture supernatants against three species of Fusarium plant pathogens, a bacterial strain of Escherichia coli, and a yeast strain of Saccharomyces cerevisiae, as well as their capacity to produce lipopeptides. The results showed that the culture supernatants of four strains close to B. subtilis species exhibited antimicrobial activities against Fusarium species and E. coli. Using mass spectrometry analyses, we identified two groups of lipopeptides (surfactins and plipastatins) in their culture supernatants. Whole-genome sequencing confirmed that these bacteria possess NRPS gene clusters for surfactin and plipastatin. In vitro tests confirmed the inhibitory effect of plipastatin alone or in combination with surfactin against the three Fusarium species.

2.
Front Bioeng Biotechnol ; 9: 815337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004661

RESUMO

Lipopeptides produced by Bacillus subtilis display many activities (surfactant, antimicrobial, and antitumoral), which make them interesting compounds with a wide range of applications. During the past years, several processes have been developed to enable their production and purification with suitable yield and purity. The already implemented processes mainly end with a critical drying step, which is currently achieved by freeze-drying. In this study, the possibility to replace this freeze-drying step with a spray-drying one, more suited to industrial applications, was analyzed. After evaluating their thermal resistance, we have developed a spray-drying methodology applicable for the three lipopeptides families produced by B. subtilis, i.e., surfactin, mycosubtilin (iturin family), and plipastatin (fengycin family). For each lipopeptide, the spray-drying procedure was applied at three steps of the purification process by ultrafiltration (supernatant, diafiltered solution, and pre-purified fraction). The analysis of the activities of each spray-dried lipopeptide showed that this drying method is not decreasing its antimicrobial and biosurfactant properties. The methodology developed in this study enabled for the first time the spray-drying of surfactin, without adjuvants' addition and regardless of the purification step considered. In the case of fengycin and mycosubtilin, only diafiltered solution and purified fraction could be successfully spray-dried without the addition of adjuvant. Maltodextrin addition was also investigated as the solution for the direct drying of supernatant. As expected, the performances of the spray-drying step and the purity of the powder obtained are highly related to the purification step at which the product was dried. Interestingly, the impact of mycosubtilin concentration on spray-drying yield was also evidenced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...