Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(6)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35744676

RESUMO

The cascading effects of microbe-plant symbioses on the second trophic level, such as phytophagous insects, have been most studied. However, few studies have examined the higher third trophic level, i.e., their natural enemies. We investigated the effects of the symbiotic associations between an arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis (Glomerales: Glomeraceae), a nitrogen-fixing bacterium, Bradyrhizobium japonicum (Rhizobiales: Bradyrhizobiaceae), and soybean, Glycine max (L.) Merr. (Fabaceae) on two natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), the ladybird beetle Coleomegilla maculata (De Geer) (Coleoptera: Coccinellidae), and the parasitoid Aphelinus certus Yasnosh (Hymenoptera: Aphelinidae). We measured the growth and survival in the predator and parasitoid reared on aphids feeding on soybean inoculated seedlings. The rhizobium symbiosis alone was affected with a decreased rate of parasitoid emergence, presumably due to decreased host quality. However, number of mummies, sex-ratio, development time, and parasitoid size were all unaffected by inoculation. AM fungus alone or co-inoculated with the rhizobium was unaffected with any of the parameters of the parasitoid. For the predator, none of the measured parameters was affected with any inoculant. Here, it appears that whatever benefits the microbe-plant symbioses confer on the second trophic level are little transferred up to the third.

2.
Microorganisms ; 10(6)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744714

RESUMO

The inoculation of arbuscular mycorrhizal (AM) fungi and rhizobia in legumes has been proven to increase plant growth and yield. To date, studies of the effects of these interactions on phytophagous insects have shown them to be context-dependent depending on the inoculant strain, the plant, and the insect species. Here, we document how a symbiosis involving an AM fungus, Rhizophagus irregularis; a rhizobium, Bradyrhizobium japonicum; and soybean, Glycine max, influences the soybean aphid, Aphis glycines. Soybean co-inoculated with the AM fungus-rhizobium pair increased the plant's biomass, nodulation, mycorrhizal colonization, nitrogen, and carbon concentrations, but decreased phosphorus concentration. Similar effects were observed with rhizobium alone, with the exception that root biomass was unaffected. With AM fungus alone, we only observed an increase in mycorrhizal colonization and phosphorus concentration. The aphids experienced an increased reproductive rate with the double inoculation, followed by rhizobium alone, whereas no effect was observed with the AM fungus. The size of individual aphids was not affected. Furthermore, we found positive correlation between nitrogen concentration and aphid population density. Our results confirm that co-inoculation of two symbionts can enhance both plant and phytophagous insect performance beyond what either symbiont can contribute alone.

3.
PLoS One ; 16(9): e0257712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34551014

RESUMO

The use of belowground microorganisms in agriculture, with the aim to stimulate plant growth and improve crop yields, has recently gained interest. However, few studies have examined the effects of microorganism inoculation on higher trophic levels in natural conditions. We examined how the diversity of phytophagous insects and their natural enemies responded to the field-inoculation of soybean with a model arbuscular mycorrhizal fungus (AMF), Rhizophagus irregularis, combined with a nitrogen-fixing bacterium, Bradyrhizobium japonicum, and a plant growth-promoting bacterium, Bacillus pumilus. We also investigate if the absence or presence of potassium fertilizer can affect this interaction. We found an increase in the abundance of piercing-sucking insects with the triple inoculant irrespective of potassium treatment, whereas there were no differences among treatments for other insect groups. A decrease in the abundance of the soybean aphid, Aphis glycines, with the double inoculant Rhizophagus + Bradyrhizobium was observed in potassium enriched plots and in the abundance of Empoasca spp. with potassium treatment independent of inoculation type. Although it was not possible to discriminate the mycorrhization realized by inoculum from that of the indigenous AMF in the field, we confirmed global negative effects of overall mycorrhizal colonization on the abundance of phytophagous piercing-sucking insects, phytophagous chewing insects, and the alpha diversity of phytophagous insects. In perspective, the use of AMF/Rhizobacteria inoculants in the field should focus on the identity and performance of strains to better understand their impact on insects.


Assuntos
Bradyrhizobium , Micorrizas , Fungos , Glycine max
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...