Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36547580

RESUMO

Plastic pollution is a growing environmental issue that results in its accumulation and persistence in soil for many decades, with possible effects on soil quality and ecosystem services. Microorganisms, and especially fungi, are a keystone of soil biodiversity and soil metabolic capacity. The aim of this research was to study soil fungal biodiversity and soil microbial metabolic profiles in three different sites in northern Italy, where macro- and microplastic concentration in soil was measured. The metabolic analyses of soil microorganisms were performed by Biolog EcoPlates, while the ITS1 fragment of the 18S ribosomal cDNA was used as a target for the metabarcoding of fungal communities. The results showed an intense and significant decrease in soil microbial metabolic ability in the site with the highest concentration of microplastics. Moreover, the soil fungal community composition was significantly different in the most pristine site when compared with the other two sites. The metabarcoding of soil samples revealed a general dominance of Mortierellomycota followed by Ascomycota in all sampled soils. Moreover, a dominance of fungi involved in the degradation of plant residues was observed in all three sites. In conclusion, this study lays the foundation for further research into the effect of plastics on soil microbial communities and their activities.

2.
J Vis Exp ; (183)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35635456

RESUMO

Environmental pollution is an increasing problem, and identifying fungi involved in the bioremediation process is an essential task. Soil hosts an incredible diversity of microbial life and can be a good source of these bioremediative fungi. This work aims to search for soil fungi with bioremediation potential by using different screening tests. Mineral culture media supplemented with recalcitrant substances as the sole carbon source were used as growth tests. First, soil dilutions were plated on Petri dishes with mineral medium amended with humic acids or lignocellulose. The growing fungal colonies were isolated and tested on different substrates, such as complex mixtures of hydrocarbons (petrolatum and used motor oil) and powders of different plastic polymers (PET, PP, PS, PUR, PVC). Qualitative enzymatic tests were associated with the growth tests to investigate the production of esterases, laccases, peroxidases, and proteases. These enzymes are involved in the main degradation processes of recalcitrant material, and their constitutive secretion by the examined fungal strains could have the potential to be exploited for bioremediation. More than 100 strains were isolated and tested, and several isolates with good bioremediation potential were found. In conclusion, the described screening tests are an easy and low-cost method to identify fungal strains with bioremediation potential from the soil. In addition, it is possible to tailor the screening tests for different pollutants, according to requirements, by adding other recalcitrant substances to minimal culture media.


Assuntos
Microbiologia do Solo , Solo , Biodiversidade , Meios de Cultura/metabolismo , Fungos/metabolismo
3.
Microorganisms ; 8(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266344

RESUMO

Many free-living saprobic fungi are nature recruited organisms for the degradation of wastes, ranging from lignocellulose biomass to organic/inorganic chemicals, aided by their production of enzymes. In this study, fungal strains were isolated from contaminated crude-oil fields in Nigeria. The dominant fungi were selected from each site and identified as Aspergillus oryzae and Mucor irregularis based on morphological and molecular characterization, with site percentage incidences of 56.67% and 66.70%, respectively. Selected strains response/tolerance to complex hydrocarbon (used engine oil) was studied by growing them on Bushnell Haas (BH) mineral agar supplemented with the hydrocarbon at different concentrations, i.e., 5%, 10%, 15%, and 20%, with a control having dextrose. Hydrocarbon degradation potentials of these fungi were confirmed in BH broth culture filtrates pre-supplemented with 1% engine oil after 15 days of incubation using GC/MS. In addition, the presence of putative enzymes, laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP) was confirmed in culture filtrates using appropriate substrates. The analyzed fungi grew in hydrocarbon supplemented medium with no other carbon source and exhibited 39.40% and 45.85% dose inhibition response (DIR) respectively at 20% hydrocarbon concentration. An enzyme activity test revealed that these two fungi produced more Lac than MnP and LiP. It was also observed through the GC/MS analyses that while A. oryzae acted on all hydrocarbon components in the used engine oil, M. irregularis only degraded the long-chain hydrocarbons and BTEX. This study confirms that A. oryzae and M. irregularis have the potential to be exploited in the bio-treatment and removal of hydrocarbons from polluted soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...