Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3949, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366049

RESUMO

Fibromyalgia (FM) is a chronic pain syndrome characterized by widespread pain. The pathophysiology of fibromyalgia is not clearly understood and there are no specific biomarkers available for accurate diagnosis. Here we define genomic signatures using high throughput RNA sequencing on 96 fibromyalgia and 93 control cases. Our findings revealed three major fibromyalgia-associated expression signatures. The first group included 43 patients with a signature enriched for gene expression associated with extracellular matrix and downregulation of RhoGDI signaling pathway. The second group included 30 patients and showed a profound reduction in the expression of inflammatory mediators with an increased expression of genes involved in the CLEAR signaling pathway. These results suggest defective tissue homeostasis associated with the extra-cellular matrix and cellular program that regulates lysosomal biogenesis and participates in macromolecule clearance in fibromyalgia. The third group of 17 FM patients showed overexpression of pathways that control acute inflammation and dysfunction of the global transcriptional process. The result of this study indicates that FM is a heterogeneous and complex disease. Further elucidation of these pathways will lead to the development of accurate diagnostic markers, and effective therapeutic options for fibromyalgia.


Assuntos
Dor Crônica , Fibromialgia , Humanos , Fibromialgia/metabolismo , Dor Crônica/genética , Genômica , Biomarcadores , Transdução de Sinais/genética
2.
Noncoding RNA ; 9(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36649033

RESUMO

The human brain has evolved to have extraordinary capabilities, enabling complex behaviors. The uniqueness of the human brain is increasingly posited to be due in part to the functions of primate-specific, including human-specific, long non-coding RNA (lncRNA) genes, systemically less conserved than protein-coding genes in evolution. Patients who have surgery for drug-resistant epilepsy are subjected to extensive electrical recordings of the brain tissue that is subsequently removed in order to treat their epilepsy. Precise localization of brain tissues with distinct electrical properties offers a rare opportunity to explore the effects of brain activity on gene expression. Here, we identified 231 co-regulated, activity-dependent lncRNAs within the human MAPK signaling cascade. Six lncRNAs, four of which were antisense to known protein-coding genes, were further examined because of their high expression and potential impact on the disease phenotype. Using a model of repeated depolarizations in human neuronal-like cells (Sh-SY5Y), we show that five out of six lncRNAs were electrical activity-dependent, with three of four antisense lncRNAs having reciprocal expression patterns relative to their protein-coding gene partners. Some were directly regulated by MAPK signaling, while others effectively downregulated the expression of the protein-coding genes encoded on the opposite strands of their genomic loci. These lncRNAs, therefore, likely contribute to highly evolved and primate-specific human brain regulatory functions that could be therapeutically modulated to treat epilepsy.

3.
Sci Rep ; 11(1): 6078, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758256

RESUMO

As a means to understand human neuropsychiatric disorders from human brain samples, we compared the transcription patterns and histological features of postmortem brain to fresh human neocortex isolated immediately following surgical removal. Compared to a number of neuropsychiatric disease-associated postmortem transcriptomes, the fresh human brain transcriptome had an entirely unique transcriptional pattern. To understand this difference, we measured genome-wide transcription as a function of time after fresh tissue removal to mimic the postmortem interval. Within a few hours, a selective reduction in the number of neuronal activity-dependent transcripts occurred with relative preservation of housekeeping genes commonly used as a reference for RNA normalization. Gene clustering indicated a rapid reduction in neuronal gene expression with a reciprocal time-dependent increase in astroglial and microglial gene expression that continued to increase for at least 24 h after tissue resection. Predicted transcriptional changes were confirmed histologically on the same tissue demonstrating that while neurons were degenerating, glial cells underwent an outgrowth of their processes. The rapid loss of neuronal genes and reciprocal expression of glial genes highlights highly dynamic transcriptional and cellular changes that occur during the postmortem interval. Understanding these time-dependent changes in gene expression in post mortem brain samples is critical for the interpretation of research studies on human brain disorders.


Assuntos
Biomarcadores , Encéfalo/metabolismo , Encéfalo/patologia , Expressão Gênica , Autopsia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Neurônios/metabolismo , Especificidade de Órgãos/genética , Transcriptoma
4.
Neuropharmacology ; 168: 107757, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31493467

RESUMO

Approximately one third of all epilepsy patients are resistant to current therapeutic treatments. Some patients with focal forms of epilepsy benefit from invasive surgical approaches that can lead to large surgical resections of human epileptic neocortex. We have developed a systems biology approach to take full advantage of these resections and the brain tissues they generate as a means to understand underlying mechanisms of neocortical epilepsy and to identify novel biomarkers and therapeutic targets. In this review, we will describe our unique approach that has led to the development of a 'NeuroRepository' of electrically-mapped epileptic tissues and associated data. This 'Big Data' approach links quantitative measures of ictal and interictal activities corresponding to a specific intracranial electrode to clinical, imaging, histological, genomic, proteomic, and metabolomic measures. This highly characterized data and tissue bank has given us an extraordinary opportunity to explore the underlying electrical, cellular, and molecular mechanisms of the human epileptic brain. We describe specific examples of how an experimental design that compares multiple cortical regions with different electrical activities has led to discoveries of layer-specific pathways and how these can be 'reverse translated' from animal models back to humans in the form of new biomarkers and therapeutic targets. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.


Assuntos
Anticonvulsivantes/administração & dosagem , Epilepsia/genética , Epilepsia/metabolismo , Neocórtex/metabolismo , Proteômica/métodos , Biologia de Sistemas/métodos , Animais , Epilepsia/prevenção & controle , Humanos , Metabolômica/métodos , Metabolômica/tendências , Neocórtex/efeitos dos fármacos , Proteômica/tendências , Biologia de Sistemas/tendências , Transcriptoma/efeitos dos fármacos , Transcriptoma/fisiologia
5.
Neurobiol Dis ; 130: 104523, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31276795

RESUMO

Increasing evidence shows that neuroinflammation mediated by activated glia and infiltrated immune cells is involved in the pathogenesis of sporadic amyotrophic lateral sclerosis (sALS). However, the mechanisms of interaction between activated glia and motor neuron degeneration are unclear. To determine the relationship between motor neurons and glial activation in the central nervous system of sALS patients, we applied new cellular interactome bioinformatics tools to transcriptome profiles established from laser captured motor neurons in regions remote from site of onset. We found a disease specific subtype of motor neuron that inversely correlated with survival of sALS patients. Interestingly, two subtypes of motor neurons (motorneuron2 and 3) and two subtypes of microglia/macrophages (microglia/macrophage1 and 2) were unique to sALS patients compared to controls. Increased microglia/macrophage1 correlated with decreased motorneuron2 and increased microglia/macrophage2 correlated with decreased motor neuron3. Increased MHC class II genes correlated with microglia/macrophage1-2. Tissue staining using immunofluorescence confirmed a significant increase of microglia/macrophage expressing MHC class II, suggesting that they were activated. Identified gene pathways and biological changes included apoptosis and protein phosphorylation in motorneuron3 and antigen processing/presentation and immune cell activation in microglia/macrophages in sALS patients. Our findings support the hypothesis that neuro-glia physical interactions are important in pathogenesis, and targeting disease-specific motor neurons and/or glia could be a useful therapy to slow disease progression.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Neuroglia/metabolismo , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/patologia , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/patologia , Neuroglia/patologia , Medula Espinal/patologia , Transcriptoma
6.
PLoS One ; 13(4): e0195639, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29634780

RESUMO

Epilepsy is a common neurological disorder, which is not well understood at the molecular level. Exactly why some brain regions produce epileptic discharges and others do not is not known. Patients who fail to respond to antiseizure medication (refractory epilepsy) can benefit from surgical removal of brain regions to reduce seizure frequency. The tissue removed in these surgeries offers an invaluable resource to uncover the molecular and cellular basis of human epilepsy. Here, we report a proteomic study to determine whether there are common proteomic patterns in human brain regions that produce epileptic discharges. We analyzed human brain samples, as part of the Systems Biology of Epilepsy Project (SBEP). These brain pieces are in vivo electrophysiologically characterized human brain samples withdrawn from the neocortex of six patients with refractory epilepsy. This study is unique in that for each of these six patients the comparison of protein expression was made within the same patient: a more epileptic region was compared to a less epileptic brain region. The amount of epileptic activity was defined for each patient as the frequency of their interictal spikes (electric activity between seizures that is a parameter strongly linked to epilepsy). Proteins were resolved from three subcellular fractions, using a 2D differential gel electrophoresis (2D-DIGE), revealing 31 identified protein spots that changed significantly. Interestingly, glial fibrillary acidic protein (GFAP) was found to be consistently down regulated in high spiking brain tissue and showed a strong negative correlation with spike frequency. We also developed a two-step analysis method to select for protein species that changed frequently among the patients and identified these proteins. A total of 397 protein spots of interest (SOI) were clustered by protein expression patterns across all samples. These clusters were used as markers and this analysis predicted proteomic changes due to both histological differences and molecular pathways, revealed by examination of gene ontology clusters. Our experimental design and proteomic data analysis predicts novel glial changes, increased angiogenesis, and changes in cytoskeleton and neuronal projections between high and low interictal spiking regions. Quantitative histological staining of these same tissues for both the vascular and glial changes confirmed these findings, which provide new insights into the structural and functional basis of neocortical epilepsy.


Assuntos
Vasos Sanguíneos/metabolismo , Epilepsia/metabolismo , Neocórtex/metabolismo , Neuroglia/metabolismo , Proteômica , Adolescente , Adulto , Pré-Escolar , Epilepsia/genética , Epilepsia/patologia , Epilepsia/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Masculino
7.
Epilepsia ; 58(9): 1626-1636, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28714074

RESUMO

OBJECTIVE: This study aimed to identify noninvasive biomarkers of human epilepsy that can reliably detect and localize epileptic brain regions. Having noninvasive biomarkers would greatly enhance patient diagnosis, patient monitoring, and novel therapy development. At the present time, only surgically invasive, direct brain recordings are capable of detecting these regions with precision, which severely limits the pace and scope of both clinical management and research progress in epilepsy. METHODS: We compared high versus low or nonspiking regions in nine medically intractable epilepsy surgery patients by performing integrated metabolomic-genomic-histological analyses of electrically mapped human cortical regions using high-resolution magic angle spinning proton magnetic resonance spectroscopy, cDNA microarrays, and histological analysis. RESULTS: We found a highly consistent and predictive metabolite logistic regression model with reduced lactate and increased creatine plus phosphocreatine and choline, suggestive of a chronically altered metabolic state in epileptic brain regions. Linking gene expression, cellular, and histological differences to these key metabolites using a hierarchical clustering approach predicted altered metabolic vascular coupling in the affected regions. Consistently, these predictions were validated histologically, showing both neovascularization and newly discovered, millimeter-sized microlesions. SIGNIFICANCE: Using a systems biology approach on electrically mapped human cortex provides new evidence for spatially segregated, metabolic derangements in both neurovascular and synaptic architecture in human epileptic brain regions that could be a noninvasively detectable biomarker of epilepsy. These findings both highlight the immense power of a systems biology approach and identify a potentially important role that magnetic resonance spectroscopy can play in the research and clinical management of epilepsy.


Assuntos
Epilepsia/metabolismo , Metabolômica , Adolescente , Biomarcadores , Encéfalo/metabolismo , Criança , Pré-Escolar , Colina/metabolismo , Creatina/metabolismo , Epilepsia/genética , Feminino , Marcadores Genéticos , Humanos , Lactente , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fosfocreatina/metabolismo
8.
Sci Rep ; 7: 40127, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28054653

RESUMO

Despite their abundance, the molecular functions of long non-coding RNAs in mammalian nervous systems remain poorly understood. Here we show that the long non-coding RNA, NEAT1, directly modulates neuronal excitability and is associated with pathological seizure states. Specifically, NEAT1 is dynamically regulated by neuronal activity in vitro and in vivo, binds epilepsy-associated potassium channel-interacting proteins including KCNAB2 and KCNIP1, and induces a neuronal hyper-potentiation phenotype in iPSC-derived human cortical neurons following antisense oligonucleotide knockdown. Next generation sequencing reveals a strong association of NEAT1 with increased ion channel gene expression upon activation of iPSC-derived neurons following NEAT1 knockdown. Furthermore, we show that while NEAT1 is acutely down-regulated in response to neuronal activity, repeated stimulation results in NEAT1 becoming chronically unresponsive in independent in vivo rat model systems relevant to temporal lobe epilepsy. We extended previous studies showing increased NEAT1 expression in resected cortical tissue from high spiking regions of patients suffering from intractable seizures. Our results indicate a role for NEAT1 in modulating human neuronal activity and suggest a novel mechanistic link between an activity-dependent long non-coding RNA and epilepsy.


Assuntos
Encéfalo/fisiologia , Excitabilidade Cortical , Neurônios/fisiologia , RNA Longo não Codificante/metabolismo , Convulsões/patologia , Animais , Células Cultivadas , Humanos , Proteínas Interatuantes com Canais de Kv/metabolismo , Células-Tronco Pluripotentes/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica , Ratos , Superfamília Shaker de Canais de Potássio
9.
Open Biol ; 6(12)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28003470

RESUMO

Long non-coding RNAs (lncRNAs) are transcripts of a recently discovered class of genes which do not code for proteins. LncRNA genes are approximately as numerous as protein-coding genes in the human genome. However, comparatively little remains known about lncRNA functions. We globally interrogated changes in the lncRNA transcriptome of oestrogen receptor positive human breast cancer cells following treatment with oestrogen, and identified 127 oestrogen-responsive lncRNAs. Consistent with the emerging evidence that most human lncRNA genes lack homologues outside of primates, our evolutionary analysis revealed primate-specific lncRNAs downstream of oestrogen signalling. We demonstrate, using multiple functional assays to probe gain- and loss-of-function phenotypes in two oestrogen receptor positive human breast cancer cell lines, that two primate-specific oestrogen-responsive lncRNAs identified in this study (the oestrogen-repressed lncRNA BC041455, which reduces cell viability, and the oestrogen-induced lncRNA CR593775, which increases cell viability) exert previously unrecognized functions in cell proliferation and growth factor signalling pathways. The results suggest that oestrogen-responsive lncRNAs are capable of altering the proliferation and viability of human breast cancer cells. No effects on cellular phenotypes were associated with control transfections. As heretofore unappreciated components of key signalling pathways in cancers, including the MAP kinase pathway, lncRNAs hence represent a novel mechanism of action for oestrogen effects on cellular proliferation and viability phenotypes. This finding warrants further investigation in basic and translational studies of breast and potentially other types of cancers, has broad relevance to lncRNAs in other nuclear hormone receptor pathways, and should facilitate exploiting and targeting these cell viability modulating lncRNAs in post-genomic therapeutics.


Assuntos
Neoplasias da Mama/genética , Estrogênios/farmacologia , Primatas/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clonagem Molecular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos/métodos
10.
J Neurochem ; 135(1): 50-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26222413

RESUMO

Maintenance of the drug-addicted state is thought to involve changes in gene expression in different neuronal cell types and neural circuits. Midbrain dopamine (DA) neurons in particular mediate numerous responses to drugs of abuse. Long noncoding RNAs (lncRNAs) regulate CNS gene expression through a variety of mechanisms, but next to nothing is known about their role in drug abuse. The proportion of lncRNAs that are primate-specific provides a strong rationale for their study in human drug abusers. In this study, we determined a profile of dysregulated putative lncRNAs through the analysis of postmortem human midbrain specimens from chronic cocaine abusers and well-matched control subjects (n = 11 in each group) using a custom lncRNA microarray. A dataset comprising 32 well-annotated lncRNAs with independent evidence of brain expression and robust differential expression in cocaine abusers is presented. For a subset of these lncRNAs, differential expression was validated by quantitative real-time PCR and cellular localization determined by in situ hybridization histochemistry. Examples of lncRNAs exhibiting DA cell-specific expression, different subcellular distributions, and covariance of expression with known cocaine-regulated protein-coding genes were identified. These findings implicate lncRNAs in the cellular responses of human DA neurons to chronic cocaine abuse. Long noncoding RNAs (lncRNAs) regulate the expression of protein-coding genes, but little is known about their potential role in drug abuse. In this study, we identified lncRNAs differentially expressed in human cocaine abusers' midbrains. One up-regulated antisense lncRNA, tumor necrosis factor receptor-associated factor 3-interacting protein 2-antisense 1 (TRAF3IP2-AS1), was found predominantly in the nucleus of human dopamine (DA) neurons, whereas the related TRAF3IP2 protein-coding transcript was distributed throughout these cells. The abundances of these transcripts were significantly correlated (left) suggesting that TRAF3IP2-AS1 may regulate TRAF3IP2 gene expression, perhaps through local chromatin changes at this locus (right).


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Mesencéfalo/metabolismo , Neurônios/metabolismo , RNA Longo não Codificante/metabolismo , RNA/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Dopamina/genética , Dopamina/metabolismo , Humanos , Neurônios/efeitos dos fármacos , Transcrição Gênica
11.
Brain ; 138(Pt 2): 356-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25516101

RESUMO

Although epilepsy is associated with a variety of abnormalities, exactly why some brain regions produce seizures and others do not is not known. We developed a method to identify cellular changes in human epileptic neocortex using transcriptional clustering. A paired analysis of high and low spiking tissues recorded in vivo from 15 patients predicted 11 cell-specific changes together with their 'cellular interactome'. These predictions were validated histologically revealing millimetre-sized 'microlesions' together with a global increase in vascularity and microglia. Microlesions were easily identified in deeper cortical layers using the neuronal marker NeuN, showed a marked reduction in neuronal processes, and were associated with nearby activation of MAPK/CREB signalling, a marker of epileptic activity, in superficial layers. Microlesions constitute a common, undiscovered layer-specific abnormality of neuronal connectivity in human neocortex that may be responsible for many 'non-lesional' forms of epilepsy. The transcriptional clustering approach used here could be applied more broadly to predict cellular differences in other brain and complex tissue disorders.


Assuntos
Encéfalo/patologia , Epilepsia/patologia , Transcrição Gênica , Adolescente , Adulto , Biomarcadores , Criança , Pré-Escolar , Análise por Conglomerados , Eletroencefalografia , Epilepsia/cirurgia , Feminino , Humanos , Lactente , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Neocórtex/patologia , Procedimentos Neurocirúrgicos , RNA/genética , Adulto Jovem
12.
Brain Sci ; 3(4): 1417-44, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24575297

RESUMO

Although activation of the innate and adaptive arms of the immune system are undoubtedly involved in the pathophysiology of neurodegenerative diseases, it is unclear whether immune system activation is a primary or secondary event. Increasingly, published studies link primary metabolic stress to secondary inflammatory responses inside and outside of the nervous system. In this study, we show that the metabolic stress pathway known as the unfolded protein response (UPR) leads to secondary activation of the immune system. First, we observe innate immune system activation in autopsy specimens from Pelizaeus-Merzbacher disease (PMD) patients and mouse models stemming from PLP1 gene mutations. Second, missense mutations in mildly- and severely-affected Plp1-mutant mice exhibit immune-associated expression profiles with greater disease severity causing an increasingly proinflammatory environment. Third and unexpectedly, we find little evidence for dysregulated expression of major antioxidant pathways, suggesting that the unfolded protein and oxidative stress responses are separable. Together, these data show that UPR activation can precede innate and/or adaptive immune system activation and that neuroinflammation can be titrated by metabolic stress in oligodendrocytes. Whether-or-not such activation leads to autoimmune disease in humans is unclear, but the case report of steroid-mitigated symptoms in a PMD patient initially diagnosed with multiple sclerosis lends support.

13.
Genetics ; 192(3): 1133-48, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22960213

RESUMO

While most gene transcription yields RNA transcripts that code for proteins, a sizable proportion of the genome generates RNA transcripts that do not code for proteins, but may have important regulatory functions. The brain-derived neurotrophic factor (BDNF) gene, a key regulator of neuronal activity, is overlapped by a primate-specific, antisense long noncoding RNA (lncRNA) called BDNFOS. We demonstrate reciprocal patterns of BDNF and BDNFOS transcription in highly active regions of human neocortex removed as a treatment for intractable seizures. A genome-wide analysis of activity-dependent coding and noncoding human transcription using a custom lncRNA microarray identified 1288 differentially expressed lncRNAs, of which 26 had expression profiles that matched activity-dependent coding genes and an additional 8 were adjacent to or overlapping with differentially expressed protein-coding genes. The functions of most of these protein-coding partner genes, such as ARC, include long-term potentiation, synaptic activity, and memory. The nuclear lncRNAs NEAT1, MALAT1, and RPPH1, composing an RNAse P-dependent lncRNA-maturation pathway, were also upregulated. As a means to replicate human neuronal activity, repeated depolarization of SY5Y cells resulted in sustained CREB activation and produced an inverse pattern of BDNF-BDNFOS co-expression that was not achieved with a single depolarization. RNAi-mediated knockdown of BDNFOS in human SY5Y cells increased BDNF expression, suggesting that BDNFOS directly downregulates BDNF. Temporal expression patterns of other lncRNA-messenger RNA pairs validated the effect of chronic neuronal activity on the transcriptome and implied various lncRNA regulatory mechanisms. lncRNAs, some of which are unique to primates, thus appear to have potentially important regulatory roles in activity-dependent human brain plasticity.


Assuntos
Encéfalo/metabolismo , Redes Reguladoras de Genes , RNA não Traduzido , Transcriptoma , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...