Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175746

RESUMO

Various preparations of follicle-stimulating hormone (FSH) are commercially available; however, they differ in glycoforms composition and purity owing to their respective sources. Additional chemical/physical changes can also be introduced during manufacturing and can impact their biological activity (biopotency), which is routinely assessed using an in vivo bioassay (Steelman-Pohley). This study aimed to determine whether an in vitro bioassay could assess biopotency by distinguishing between r-hFSH chemical/physical variants with similar ability to the in vivo bioassay. The specific activity (units of biological activity per mg of product) of variants of r-hFSH generated through enrichment (acidic/basic), stress (oxidative/acidic pH) and enzymatic treatment (desialylation and desialylation/degalactosylation) was compared using the in vivo and in vitro bioassays. The in vitro bioassay reliably detected potential chemical/physical modifications in r-hFSH variants that may impact biopotency. Overall, the methods demonstrated a comparable ability to detect changes in specific activities due to chemical/physical differences in r-hFSH variants. These data indicate that the in vitro bioassay is suitable to replace the in vivo bioassay.


Assuntos
Hormônio Foliculoestimulante Humano , Hormônio Foliculoestimulante , Bioensaio/métodos , Técnicas In Vitro
2.
Cell Commun Signal ; 16(1): 73, 2018 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390666

RESUMO

BACKGROUND: p130 Crk-associated substrate (p130CAS; also known as BCAR1) is a scaffold protein that modulates many essential cellular processes such as cell adhesion, proliferation, survival, cell migration, and intracellular signaling. p130Cas has been shown to be highly expressed in a variety of human cancers of epithelial origin. However, few data are available regarding the role of p130Cas during normal epithelial development and homeostasis. METHODS: To this end, we have generated a genetically modified mouse in which p130Cas protein was specifically ablated in the epidermal tissue. RESULTS: By using this murine model, we show that p130Cas loss results in increased cell proliferation and reduction of cell adhesion to extracellular matrix. In addition, epidermal deletion of p130Cas protein leads to premature expression of "late" epidermal differentiation markers, altered membrane E-cadherin/catenin proteins localization and aberrant tyrosine phosphorylation of E-cadherin/catenin complexes. Interestingly, these alterations in adhesive properties in absence of p130Cas correlate with abnormalities in progenitor cells balance resulting in the amplification of a more committed cell population. CONCLUSION: Altogether, these results provide evidence that p130Cas is an important regulator of epidermal cell fate and homeostasis.


Assuntos
Adesão Celular , Diferenciação Celular , Proteína Substrato Associada a Crk/deficiência , Proteína Substrato Associada a Crk/genética , Epiderme/metabolismo , Deleção de Genes , Homeostase/genética , Animais , Proliferação de Células , Matriz Extracelular/metabolismo , Queratinócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
3.
Cell Commun Signal ; 16(1): 90, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477510

RESUMO

Following publication of the original article [1], the authors reported an error in the name of the 11th author. The author's name was incorrectly published as "Vincenzo Calautti", instead of "Enzo Calautti".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...