Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 25(13-14): 1037-1052, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30612538

RESUMO

IMPACT STATEMENT: Biomaterials can play a dual role in bone regeneration: they enable local sustained delivery of growth factors, such as bone morphogenetic protein-2 (BMP-2), while they provide structural support as scaffold. By better imitating the properties of native bone tissue, scaffolds may be both osteoconductive and osteoinductive. The latter can be achieved by modifying the electrical charge of the surface. The present work uses tunable oligo[(polyethylene glycol) fumarate] hydrogel and demonstrates that negative charge enhances BMP-2-induced bone formation compared with neutral or positive charge. Altogether, this indicates that tissue-specific surface charge modifications of biomaterials hold great promise in the field of tissue regeneration.


Assuntos
Materiais Biocompatíveis/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Eletricidade , Osteogênese/efeitos dos fármacos , Animais , Liberação Controlada de Fármacos , Implantes Experimentais , Cinética , Masculino , Microesferas , Polímeros/química , Ratos Sprague-Dawley , Microtomografia por Raio-X
2.
Tissue Eng Part C Methods ; 24(7): 379-390, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29756545

RESUMO

Local sustained delivery of bioactive molecules from biomaterials is a promising strategy to enhance bone regeneration. To optimize delivery vehicles for bone formation, the design characteristics are tailored with consequential effect on bone morphogenetic protein-2 (BMP-2) release and bone regeneration. Complying with the 3R principles (Replacement, Reduction, and Refinement), the growth factor release is often investigated in vitro using several buffers to mimic the in vivo physiological environment. However, this remains an unmet need. Therefore, this study investigates the in vitro-in vivo correlation (IVIVC) of BMP-2 release from complex delivery vehicles in several commonly used in vitro buffers: cell culture model, phosphate buffered saline, and a strong desorption buffer. The results from this study showed that the release environment affected the BMP-2 release profiles, creating distinct relationships between release versus time and differences in extent of release. According to the guidance set by the U.S. Food and Drug Administration (FDA), IVIVC resulted in level A internal predictability for individual composites. Since the IVIVC was influenced by the BMP-2 loading method and composite surface chemistry, the external predictive value of the IVIVCs was limited. These results show that the IVIVCs can be used for predicting the release of an individual composite. However, the models cannot be used for predicting in vivo release for different composite formulations since they lack external predictability. Potential confounding effects of drug type, delivery vehicle formulations, and application site should be added to the equation to develop one single IVIVC applicable for complex delivery vehicles. Altogether, these results imply that more sophisticated in vitro systems should be used in bone regeneration to accurately discriminate and predict in vivo BMP-2 release from different complex delivery vehicles.


Assuntos
Proteína Morfogenética Óssea 2/farmacocinética , Regeneração Óssea , Sistemas de Liberação de Medicamentos , Osteogênese , Animais , Proteína Morfogenética Óssea 2/administração & dosagem , Técnicas In Vitro , Masculino , Microesferas , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
3.
J Tissue Eng Regen Med ; 12(6): 1339-1351, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603878

RESUMO

The optimal release profile of locally delivered bone morphogenetic protein-2 (BMP-2) for safe and effective clinical application is unknown. In this work, the effect of differential BMP-2 release on bone formation was investigated using a novel biomaterial oligo[(polyethylene glycol) fumarate] bis[2-(methacryloyloxy) ethyl] phosphate hydrogel (OPF-BP) containing poly(lactic-co-glycolic acid) microspheres. Three composite implants with the same biomaterial chemistry and structure but different BMP-loading methods were created: BMP-2 encapsulated in microspheres (OPF-BP-Msp), BMP-2 encapsulated in microspheres and adsorbed on the phosphorylated hydrogel (OPF-BP-Cmb), and BMP-2 adsorbed on the phosphorylated hydrogel (OPF-BP-Ads). These composites were compared with the clinically used BMP-2 carrier, Infuse® absorbable collagen sponge (ACS). Differential release profiles of bioactive BMP-2 were achieved by these composites. In a rat subcutaneous implantation model, OPF-BP-Ads and ACS generated a large BMP-2 burst release (>75%), whereas a more sustained release was seen for OPF-BP-Msp and OPF-BP-Cmb (~25% and 50% burst, respectively). OPF-BP-Ads generated significantly more bone than did all other composites, and the bone formation was 12-fold higher than that of the clinically used ACS. Overall, this study clearly shows that BMP-2 burst release generates more subcutaneous bone than do sustained release in OPF-BP-microsphere composites. Furthermore, composites should not only function as a delivery vehicle but also provide a proper framework to achieve appropriate bone formation.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Hidrogéis/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Implantes Experimentais , Cinética , Masculino , Microesferas , Fosforilação , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos Sprague-Dawley , Alicerces Teciduais/química , Microtomografia por Raio-X
4.
Connect Tissue Res ; 59(6): 542-549, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29513041

RESUMO

PURPOSE: Revascularization of natural and synthetic scaffolds is a critical part of the scaffold's incorporation and tissue ingrowth. Our goals were to create a biocompatible polymer scaffold with 3D-printing technology, capable of sustaining vascularization and tissue ingrowth. METHODS: We synthesized biodegradable polycaprolactone fumarate (PCLF) scaffolds to allow tissue ingrowth via large interconnected pores. The scaffolds were prepared with Poly(lactic-co-glycolic acid)(PLGA) microspheres seeded with or without different growth factors including VEGF,FGF-2, and/or BMP-2. Scaffolds were implanted into the subcutaneous tissues of rats before undergoing histologic and microCT angiographic analysis. RESULTS: At harvest after 12 weeks, scaffolds had tissue infiltrating into their pores without signs of scar tissue formation, fibrous capsule formation, or immune responses against PCLF. Histology for M1/M2 macrophage phenotypes confirmed that there were no overt signs of immune responses. Both microCT angiography and histologic analysis demonstrated marked tissue and vessel ingrowth throughout the pores traversing the body of the scaffolds. Scaffolds seeded with microspheres containing VEGF or VEGF with either BMP-2 or FGF-2 had significantly higher vascular ingrowth and vessel penetration than controls. All VEGF-augmented scaffolds were positive for Factor-VIII and exhibited collagen tissue infiltration throughout the pores. Furthermore, scaffolds with VEGF and BMP-2 had high levels of mineral deposition throughout the scaffold that are attributable to BMP-2. CONCLUSIONS: PCLF polymer scaffold can be utilized as a framework for vascular ingrowth and regeneration of multiple types of tissues. This novel scaffold material has promise in tissue regeneration across all types of tissues from soft tissue to bone.


Assuntos
Neovascularização Fisiológica/efeitos dos fármacos , Poliésteres , Impressão Tridimensional , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular , Animais , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Reagentes de Ligações Cruzadas/química , Fumaratos/química , Poliésteres/química , Poliésteres/farmacologia , Ratos , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacologia
5.
J Tissue Eng Regen Med ; 12(1): e398-e407, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28296347

RESUMO

Positively-charged oligo[poly(ethylene glycol)fumarate] (OPF+ ) is a biodegradable hydrogel used for spinal cord injury repair. We compared scaffolds containing primary Schwann cells (SCs) to scaffolds delivering SCs genetically modified to secrete high concentrations of glial cell-derived neurotrophic factor (GDNF). Multichannel OPF+ scaffolds loaded with SCs or GDNF-SCs were implanted into transected rat spinal cords for 4 weeks. GDNF-SCs promoted regeneration of more axons into OPF+ scaffolds (2773.0 ± 396.0) than primary SC OPF+ scaffolds (1666.0 ± 352.2) (p = 0.0491). This increase was most significant in central and ventral-midline channels of the scaffold. Axonal remyelination was quantitated by stereologic analysis. Increased myelination of regenerating axons was observed in the GDNF-SC group. Myelinating cell and axon complexes were formed by host SCs and not by implanted cells or host oligodendrocytes. Fast Blue retrograde tracing studies determined the rostral-caudal directionality of axonal growth. The number of neurons that projected axons rostrally through the GDNF-SC scaffolds was higher (7929 ± 1670) than in animals with SC OPF+ scaffolds (1069 ± 241.5) (p < 0.0001). The majority of ascending axons were derived from neurons located more than 15 mm from the scaffold-cord interface, and were identified to be lumbosacral intraspinal motor neurons. Transected animals with GDNF-SC OPF+ scaffolds partially recovered locomotor function at weeks 3 and 4 following surgery. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Axônios/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hidrogéis/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Células de Schwann/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Alicerces Teciduais/química , Animais , Axônios/efeitos dos fármacos , Fumaratos/química , Humanos , Polietilenoglicóis/química , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos
6.
Tissue Eng Part A ; 24(3-4): 245-253, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28530131

RESUMO

Intra-articular ligamentous injuries are typically unrepairable and have limited outcomes after graft reconstruction. A combination of porous polycaprolactone fumarate (PCLF) scaffolds with polyethylene terephthalate (PET) sutures was developed with the goal of regenerating intra-articular ligaments. Scaffolds were fabricated by injecting PCLF over three-dimensional-printed molds containing two strands of PET suture down its central pore followed by cross-linking. Scaffolds were seeded with human mesenchymal stem cells (MSCs) from adipose tissue. To demonstrate cell attachment and proliferation in culture, we performed live/dead staining and cell proliferation assays. These experiments showed that MSCs remain viable and continue to proliferate on the scaffolds in culture for at least 2 weeks. Bare scaffolds were then used to reconstruct the rabbit anterior-cruciate ligament (ACL), while control rabbits underwent semitendinosus autograft reconstruction. The specimens underwent micro-computed tomography (CT) imaging, histological examination, and biomechanical testing at 8 weeks. The ultimate pull-out strength of the PCLF-PET scaffolds and tendon autografts was initially 72 ± 30 N and to 45 ± 10 N, respectively (p < 0.06). On inspection after 8 weeks in vivo, the intra-articular portion of the PCLF-PET scaffolds was fragmented while the tendon autografts remained intact. Cross-sectional areas of bone tunnels in the PCLF-PET scaffolds (11.3 ± 1 mm2) were enlarged compared to tendon autografts (3.8 ± 0.5 mm2) (p < 0.004) as measured by micro-CT. These studies show that PET-reinforced PCLF scaffolds are capable of initial ACL reconstruction and supports stem cell growth. The intra-articular portion of the scaffold may need to be re-engineered to support their use in ligament regeneration.


Assuntos
Poliésteres/química , Poliésteres/farmacologia , Polietilenotereftalatos/química , Polietilenotereftalatos/farmacologia , Alicerces Teciduais/química , Ligamento Cruzado Anterior/citologia , Reconstrução do Ligamento Cruzado Anterior/métodos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos
7.
Tissue Eng Part A ; 23(13-14): 622-629, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28375818

RESUMO

Current treatment options for cartilage injuries are limited. The goals of this study are to create a biodegradable polymer scaffold with the capabilities of sustaining chondrocyte growth and proliferation, enable cell-to-cell communication and tissue regeneration through large pores, and assess the biological augmentation of the scaffold capabilities using platelet lysate (PL). We synthesized biodegradable polycaprolactone fumarate (PCLF) scaffolds to allow cell-cell communication through large interconnected pores. Molds were printed using a three-dimensional printer and scaffolds synthesized through UV crosslinking. Culture medium included alpha modified Eagle's media with either 10% fetal bovine serum (FBS) or 5% PL, a mixture of platelet release products, after being seeded onto scaffolds through a dynamic bioreactor. Assays included cellular proliferation (MTS), toxicity and viability (live/dead immunostaining), differentiation (glycosaminoglycan [GAG], alkaline phosphatase [ALP], and total collagen), and immunostaining for chondrogenic markers collagen II and Sox 9 (with collagen I as a negative control). The large interconnected pores (500 and 750 µm) enable cell-to-cell communication and cellular infiltration into the scaffolds, as the cells remained viable and proliferated for 2 weeks. Chondrocytes cultured in PL showed increased rates of proliferation when compared with FBS. The chondrogenic markers GAG and total collagen contents increased over 2 weeks at each time point, whereas the osteogenic marker ALP did not significantly change. Immunostaining at 2 and 4 weeks for the expression of chondrogenic markers Collagen II and Sox 9 was increased when compared with control human fibroblasts. These results show that the PCLF polymer scaffold enables chondrocytes to attach, proliferate, and retain their chondrogenic phenotypes, demonstrating potential in chondrocyte engineering and cartilage regeneration.


Assuntos
Proliferação de Células , Condrócitos/metabolismo , Poliésteres/química , Alicerces Teciduais/química , Animais , Adesão Celular , Condrócitos/citologia , Humanos , Coelhos
8.
Tissue Eng Part A ; 23(7-8): 359-365, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28081675

RESUMO

Anterior cruciate ligament (ACL) ruptures reconstructed with tendon grafts are commonly fixed with bioabsorbable implants, which are frequently complicated by incomplete bone filling upon degradation. Bone regeneration after ACL reconstruction could be enhanced by utilizing tissue engineering techniques and three-dimensional (3D) printing to create a porous bioabsorbable scaffold with delayed delivery of recombinant-human bone morphogenetic protein 2 (rhBMP-2). The first aim of this study was to design a 3D poly(propylene fumarate) (PPF) porous scaffold that maintained suitable pullout strength for future testing in a rabbit ACL reconstruction model. Our second aim was to determine the release kinetics of rhBMP-2 from PPF scaffolds that utilized both calcium-phosphate coatings and growth factor delivery on microspheres, both of which have been shown to decrease the initial burst release of rhBMP-2 and increase bone regeneration. To determine the degree of scaffold porosity that maintained suitable pullout strength, tapered scaffolds were fabricated with increasing porosity (0%, 20%, 35%, and 44%) and pullout testing was performed in a cadaveric rabbit ACL reconstruction model. Scaffolds were coated with carbonate hydroxyapatite (synthetic bone mineral [SBM]), and radiolabeled rhBMP-2 was delivered in four different experimental groups as follows: Poly(lactic-co-glycolic acid) microspheres only, microspheres and collagen (50:50), collagen only, and saline solution only. rhBMP-2 release was measured at day 1, 2, 4, 8, 16, and 32. The microsphere delivery groups had a smaller burst release and released a smaller percentage of rhBMP-2 over the 32 days than the collagen and saline only groups. In conclusion, a porous bioabsorbable scaffold with suitable strength for a rabbit ACL reconstruction was developed. Combining a synthetic bone mineral coating with microspheres had an additive effect, decreasing the initial burst release and cumulative release of rhBMP-2. Future studies need to evaluate this scaffold's fixation strength and bone filling capabilities in vivo compared to traditional bioabsorbable implants.


Assuntos
Ligamento Cruzado Anterior/citologia , Proteína Morfogenética Óssea 2/química , Fumaratos/química , Polipropilenos/química , Alicerces Teciduais/química , Fator de Crescimento Transformador beta/química , Animais , Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta/farmacologia
9.
PLoS One ; 11(1): e0146401, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26760034

RESUMO

Surgical site infection (SSI) remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycol)fumarate)/sodium methacrylate (OPF/SMA) charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 µg drug per mg hydrogel) and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.


Assuntos
Hidrogéis/química , Vancomicina/administração & dosagem , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Fenômenos Biofísicos , Linhagem Celular , Preparações de Ação Retardada , Fumaratos/síntese química , Fumaratos/química , Hidrogéis/síntese química , Cinética , Metacrilatos/síntese química , Metacrilatos/química , Camundongos , Modelos Teóricos , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Temperatura , Vancomicina/farmacologia
10.
Tissue Eng Part A ; 21(21-22): 2703-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26413793

RESUMO

PURPOSE: Surgical reconstruction of intra-articular ligament injuries is hampered by the poor regenerative potential of the tissue. We hypothesized that a novel composite polymer "neoligament" seeded with progenitor cells and growth factors would be effective in regenerating native ligamentous tissue. METHODS: We synthesized a fumarate-derivative of polycaprolactone fumarate (PCLF) to create macro-porous scaffolds to allow cell-cell communication and nutrient flow. Clinical grade human adipose tissue-derived human mesenchymal stem cells (AMSCs) were cultured in 5% human platelet lysate (PL) and seeded on scaffolds using a dynamic bioreactor. Cell growth, viability, and differentiation were examined using metabolic assays and immunostaining for ligament-related markers (e.g., glycosaminoglycans [GAGs], alkaline phosphatase [ALP], collagens, and tenascin-C). RESULTS: AMSCs seeded on three-dimensional (3D) PCLF scaffolds remain viable for at least 2 weeks with proliferating cells filling the pores. AMSC proliferation rates increased in PL compared to fetal bovine serum (FBS) (p < 0.05). Cells had a low baseline expression of ALP and GAG, but increased expression of total collagen when induced by the ligament and tenogenic growth factor fibroblast growth factor 2 (FGF-2), especially when cultured in the presence of PL (p < 0.01) instead of FBS (p < 0.05). FGF-2 and PL also significantly increased immunostaining of tenascin-C and collagen at 2 and 4 weeks compared with human fibroblasts. SUMMARY: Our results demonstrate that AMSCs proliferate and eventually produce a collagen-rich extracellular matrix on porous PCLF scaffolds. This novel scaffold has potential in stem cell engineering and ligament regeneration.


Assuntos
Tecido Adiposo/citologia , Plaquetas/metabolismo , Ligamentos/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Alicerces Teciduais , Tecido Adiposo/fisiologia , Plaquetas/química , Diferenciação Celular/fisiologia , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Regeneração Tecidual Guiada/instrumentação , Ligamentos/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Porosidade , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
11.
Tissue Eng Part A ; 21(13-14): 2099-114, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25891264

RESUMO

Positively charged oligo[poly(ethylene glycol) fumarate] (OPF+) scaffolds loaded with Schwann cells bridge spinal cord injury (SCI) lesions and support axonal regeneration in rat. The regeneration achieved is not sufficient for inducing functional recovery. Attempts to increase regeneration would benefit from understanding the effects of the scaffold and transplanted cells on lesion environment. We conducted morphometric and stereological analysis of lesions in rats implanted with OPF+ scaffolds with or without loaded Schwann cells 1, 2, 3, 4, and 8 weeks after thoracic spinal cord transection. No differences were found in collagen scarring, cyst formation, astrocyte reactivity, myelin debris, or chondroitin sulfate proteoglycan (CSPG) accumulation. However, when scaffold-implanted animals were compared with animals with transection injuries only, these barriers to regeneration were significantly reduced, accompanied by increased activated macrophages/microglia. This distinctive and regeneration permissive tissue reaction to scaffold implantation was independent of Schwann cell transplantation. Although the tissue reaction was beneficial in the short term, we observed a chronic fibrotic host response, resulting in scaffolds surrounded by collagen at 8 weeks. This study demonstrates that an appropriate biomaterial scaffold improves the environment for regeneration. Future targeting of the host fibrotic response may allow increased axonal regeneration and functional recovery.


Assuntos
Fumaratos/farmacologia , Polietilenoglicóis/farmacologia , Implantação de Prótese , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais/química , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteína Básica da Mielina/metabolismo , Fenótipo , Proteoglicanas/metabolismo , Ratos Sprague-Dawley , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/transplante , Fatores de Tempo
12.
Regen Med ; 10(2): 135-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25835479

RESUMO

AIM: Critical knee osteochondral defects in seven adult minipigs were treated with oligo(polyethylene glycol)fumarate (OPF) hydrogel combined with autologous or human adipose-derived stem cells (ASCs), and evaluated after 6 months. METHODS: Four defects were made on the peripheral part of right trochleas (n = 28), and treated with OPF scaffold alone or pre-seeded with ASCs. RESULTS: A better quality cartilage tissue characterized by improved biomechanical properties and higher collagen type II expression was observed in the defects treated by autologous or human ASC-loaded OPF; similarly this approach induced the regeneration of more mature bone with upregulation of collagen type I expression. CONCLUSION: This study provides the evidence that both porcine and human adipose-derived stem cells associated to OPF hydrogel allow improving osteochondral defect regeneration in a minipig model.


Assuntos
Adipócitos/citologia , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual , Tecido Adiposo/citologia , Tecido Adiposo/patologia , Animais , Fenômenos Biomecânicos , Cartilagem/patologia , Técnicas de Cultura de Células , Linhagem da Célula , Condrócitos/citologia , Colágeno/química , Humanos , Inflamação/patologia , Articulações/patologia , Masculino , Nanotecnologia , Permeabilidade , Poliésteres/química , Polietilenoglicóis/química , Células-Tronco/citologia , Estresse Mecânico , Suínos , Porco Miniatura
13.
Acta Biomater ; 18: 9-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25575855

RESUMO

Various calcium phosphate based coatings have been evaluated for better bony integration of metallic implants and are currently being investigated to improve the surface bioactivity of polymeric scaffolds. The aim of this study was to evaluate the role of calcium phosphate coating and simultaneous delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the in vivo bone regeneration capacity of biodegradable, porous poly(propylene fumarate) (PPF) scaffolds. PPF scaffolds were coated with three different calcium phosphate formulations: magnesium-substituted ß-tricalcium phosphate (ß-TCMP), carbonated hydroxyapatite (synthetic bone mineral, SBM) and biphasic calcium phosphate (BCP). In vivo bone regeneration was evaluated by implantation of scaffolds in a critical-sized rabbit calvarial defect loaded with different doses of rhBMP-2. Our data demonstrated that scaffolds with each of the calcium phosphate coatings were capable of sustaining rhBMP-2 release and retained an open porous structure. After 6weeks of implantation, micro-computed tomography revealed that the rhBMP-2 dose had a significant effect on bone formation within the scaffolds and that the SBM-coated scaffolds regenerated significantly greater bone than BCP-coated scaffolds. Mechanical testing of the defects also indicated restoration of strength in the SBM and ß-TCMP with rhBMP-2 delivery. Histology results demonstrated bone growth immediately adjacent to the scaffold surface, indicating good osteointegration and osteoconductivity for coated scaffolds. The results obtained in this study suggest that the coated scaffold platform demonstrated a synergistic effect between calcium phosphate coatings and rhBMP-2 delivery and may provide a promising platform for the functional restoration of large bone defects.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Fumaratos/farmacologia , Polipropilenos/farmacologia , Crânio/efeitos dos fármacos , Alicerces Teciduais/química , Fator de Crescimento Transformador beta/farmacologia , Animais , Preparações de Ação Retardada , Feminino , Humanos , Imageamento Tridimensional , Cinética , Porosidade , Coelhos , Proteínas Recombinantes/farmacologia , Crânio/diagnóstico por imagem , Espectrometria por Raios X , Microtomografia por Raio-X
14.
J Biomed Mater Res A ; 103(8): 2549-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25504776

RESUMO

In tissue engineering, development of an osteoconductive construct that integrates with host tissue remains a challenge. In this work, the effect of bone-like minerals on maturation of pre-osteoblast cells was investigated using polymer-mineral scaffolds composed of poly(propylene fumarate)-co-poly(caprolactone) (PPF-co-PCL) and nano-sized hydroxyapatite (HA). The HA of varying concentrations was added to an injectable formulation of PPF-co-PCL and the change in thermal and mechanical properties of the scaffolds was evaluated. No change in onset of degradation temperature was observed due to the addition of HA, however compressive and tensile moduli of copolymer changed significantly when HA amounts were increased in composite formulation. The change in mechanical properties of copolymer was found to correlate well to HA concentration in the constructs. Electron microscopy revealed mineral nucleation and a change in surface morphology and the presence of calcium and phosphate on surfaces was confirmed using energy dispersive X-ray analysis. To characterize the effect of mineral on attachment and maturation of pre-osteoblasts, W20-17 cells were seeded on HA/copolymer composites. We demonstrated that cells attached more to the surface of HA containing copolymers and their proliferation rate was significantly increased. Thus, these findings suggest that HA/PPF-co-PCL composite scaffolds are capable of inducing maturation of pre-osteoblasts and have the potential for use as scaffold in bone tissue engineering.


Assuntos
Materiais Biocompatíveis , Osso e Ossos , Durapatita , Nanocompostos , Polímeros , Alicerces Teciduais , Animais , Linhagem Celular , Proliferação de Células , Colágeno Tipo I/metabolismo , Teste de Materiais
15.
Microsurgery ; 34(4): 301-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24395434

RESUMO

We previously demonstrated recipient-derived neoangiogenesis to maintain viability of living bone allogeneic transplants without long-term immunosuppression. The effect of cytokine delivery to enhance this process is studied. Vascularized femur transplantation was performed from Dark Agouti to Piebald Virol Glaxo rats. Poly(d,l-lactide-co-glycolide) microspheres loaded with buffer (N = 11), basic fibroblast growth factor (FGF2) (N = 10), vascular endothelial growth factor (VEGF) (N = 11), or both (N = 11) were inserted intramedullarly alongside a recipient-derived arteriovenous bundle. FK-506 was administered for 2 weeks. At 18 weeks, bone blood flow, microangiography, histologic, histomorphometric, and alkaline phosphatase measurements were performed. Bone blood flow was greater in the combined group than control and VEGF groups (P = 0.04). Capillary density was greater in the FGF2 group than in the VEGF and combined groups (P < 0.05). Bone viability, growth, and alkaline phosphatase activity did not vary significantly between groups. Neoangiogenesis in vascularized bone allotransplants is enhanced by angiogenic cytokine delivery, with results using FGF2 that are comparable to isotransplant from previous studies. Further studies are needed to achieve bone formation similar to isotransplants.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Transplante Ósseo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Osso e Ossos/irrigação sanguínea , Feminino , Osteogênese , Ratos , Fatores de Tempo
16.
Tissue Eng Part A ; 20(5-6): 1096-102, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24256208

RESUMO

A novel biodegradable copolymer, poly(propylene fumarate-co-caprolactone) [P(PF-co-CL)], has been developed in our laboratory as an injectable scaffold for bone defect repair. In the current study, we evaluated the ability of P(PF-co-CL) to reconstitute the load-bearing capacity of vertebral bodies with lytic lesions. Forty vertebral bodies from four fresh-frozen cadaveric thoracolumbar spines were used for this study. They were randomly divided into four groups: intact vertebral body (intact control), simulated defect without treatment (negative control), defect treated with P(PF-co-CL) (copolymer group), and defect treated with poly(methyl methacrylate) (PMMA group). Simulated metastatic lytic defects were made by removing a central core of the trabecular bone in each vertebral body with an approximate volume of 25% through an access hole in the side of the vertebrae. Defects were then filled by injecting either P(PF-co-CL) or PMMA in situ crosslinkable formulations. After the spines were imaged with quantitative computerized tomography, single vertebral body segments were harvested for mechanical testing. Specimens were compressed until failure or to 25% reduction in body height and ultimate strength and elastic modulus of each specimen were then calculated from the force-displacement data. The average failure strength of the copolymer group was 1.83 times stronger than the untreated negative group and it closely matched the intact vertebral bodies (intact control). The PMMA-treated vertebrae, however, had a failure strength 1.64 times larger compared with the intact control. The elastic modulus followed the same trend. This modulus mismatch between PMMA-treated vertebrae and the host vertebrae could potentially induce a fracture cascade and degenerative changes in adjacent intervertebral discs. In contrast, P(PF-co-CL) restored the mechanical properties of the treated segments similar to the normal, intact, vertebrae. Therefore, P(PF-co-CL) may be a suitable alternative to PMMA for vertebroplasty treatment of vertebral bodies with lytic defects.


Assuntos
Materiais Biocompatíveis/farmacologia , Teste de Materiais , Modelos Biológicos , Poliésteres/farmacologia , Coluna Vertebral/patologia , Coluna Vertebral/fisiopatologia , Idoso , Fenômenos Biomecânicos/efeitos dos fármacos , Densidade Óssea , Cadáver , Módulo de Elasticidade , Fraturas por Compressão/diagnóstico por imagem , Fraturas por Compressão/fisiopatologia , Fraturas por Compressão/terapia , Humanos , Injeções , Pessoa de Meia-Idade , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/fisiopatologia , Fraturas da Coluna Vertebral/terapia , Coluna Vertebral/efeitos dos fármacos , Tomografia Computadorizada por Raios X
17.
Biomaterials ; 34(34): 8630-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23937914

RESUMO

Four biomaterial tubes, poly(lactic-co-glycolic acid) (PLGA), poly(caprolactone fumarate) (PCLF), a neutral oligo[(polyethylene glycol) fumarate] (OPF) hydrogel or a positively charged oligo[(polyethylene glycol) fumarate] (OPF(+)) hydrogel with a PCLF sleeve, have previously been shown to have benefits for nerve repair. However, no direct comparison to identify the optimal material have been made. Herein, these nerve tubes were implanted in a rat sciatic nerve model and nerve regeneration was quantified and compared by using accepted nerve assessment techniques. Using standard statistical methods, no significant differences of individual parameters were apparent between groups despite PCLF showing a tendency to perform better than the others. Using a mean-variance based ranking system of multiple independent parameters, statistical differences became apparent. It was clear that the PLCF tube supported significantly improved nerve regeneration and recovery compared to the other three biomaterial conduits. The ability to simultaneously compare a number of regenerative parameters and elucidate the best material from the combination of these individual parameters is of importance to the nerve regeneration area and has implications for the tissue engineering field. By using this method of comparison, a number of biomaterial constructs may be compared under similar conditions and the optimal construct elucidated using the minimal number of animals and materials.


Assuntos
Materiais Biocompatíveis/química , Regeneração Nervosa/efeitos dos fármacos , Próteses e Implantes , Nervo Isquiático/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Feminino , Ácido Láctico/farmacologia , Poliésteres/farmacologia , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química
18.
J Biomed Mater Res A ; 101(9): 2491-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23355512

RESUMO

Osteosarcoma is a bone tumor that affects children and young adults. 2-Methoxyestradiol (2-ME), a naturally occurring estrogen metabolite, kills osteosarcoma cells, but does not affect normal osteoblasts. In order to effectively target osteosarcoma and improve the therapeutic index of the drug 2-ME, we have encapsulated 2-ME in a composite of oligo-(polyethylene glycol) fumarate (OPF) hydrogel and poly (lactic-co-glycolic acid) (PLGA) microspheres and investigated the effect of polymer composition on 2-ME release kinetics and osteosarcoma cell survival. The in vitro study shows that 2-ME can be released in a controlled manner over 21-days. The initial burst releases observed on day 1 were 50% and 32% for OPF and OPF/PLGA composites, respectively. The extended release kinetics show that 100% of the encapsulated 2-ME is released by day 12 from OPF, whereas the OPF/PLGA composites showed a release of 85% on day 21. 2-ME released from the polymers was biologically active and blocked osteosarcoma cell proliferation in vitro. Also, comparison of 2-ME delivery in osteosarcoma cells in culture, shows that direct treatment has no effect after 3 days, whereas polymer-mediated delivery produces anti-tumor effects that could be sustained for 21 days. These findings show that the OPF and PLGA polymeric system may prove to be useful in controlled and sustained delivery of 2-ME and could be further explored in the treatment of osteosarcoma.


Assuntos
Sistemas de Liberação de Medicamentos , Estradiol/análogos & derivados , Ácido Láctico , Osteossarcoma/tratamento farmacológico , Ácido Poliglicólico , 2-Metoxiestradiol , Antineoplásicos Hormonais/administração & dosagem , Materiais Biocompatíveis , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Estradiol/administração & dosagem , Humanos , Hidrogéis , Teste de Materiais , Microesferas , Osteossarcoma/patologia , Poliésteres , Polietilenoglicóis , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
19.
Bone ; 52(1): 296-307, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23085085

RESUMO

Histone deacetylase 3 (Hdac3) is a nuclear enzyme that removes acetyl groups from lysine residues in histones and other proteins to epigenetically regulate gene expression. Hdac3 interacts with bone-related transcription factors and co-factors such as Runx2 and Zfp521, and thus is poised to play a key role in the skeletal system. To understand the role of Hdac3 in osteoblasts and osteocytes, Hdac3 conditional knockout (CKO) mice were created with the osteocalcin (OCN) promoter driving Cre expression. Hdac3 CKO(OCN) mice were of normal size and weight, but progressively lost trabecular and cortical bone mass with age. The Hdac3 CKO(OCN) mice exhibited reduced cortical bone mineralization and material properties and suffered frequent fractures. Bone resorption was lower, not higher, in the Hdac3 CKO(OCN) mice, suggesting that primary defects in osteoblasts caused the reduced bone mass. Indeed, reductions in bone formation were observed. Osteoblasts and osteocytes from Hdac3 CKO(OCN) mice showed increased DNA damage and reduced functional activity in vivo and in vitro. Thus, Hdac3 expression in osteoblasts and osteocytes is essential for bone maintenance during aging.


Assuntos
Envelhecimento/metabolismo , Densidade Óssea , Histona Desacetilases/metabolismo , Absorciometria de Fóton , Animais , Sequência de Bases , Dano ao DNA , Primers do DNA , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Osteocalcina/genética , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas
20.
Acta Biomater ; 9(3): 5438-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23022545

RESUMO

Stimuli-responsive hydrogels have enormous potential in drug delivery applications. They can be used for site-specific drug delivery due to environmental variables in the body such as pH and temperature. In this study, we have developed pH-responsive microgels for the delivery of doxorubicin (DOX) in order to optimize its anti-tumor activity while minimizing its systemic toxicity. We used a copolymer of oligo(polyethylene glycol) fumarate (OPF) and sodium methacrylate (SMA) to fabricate the pH-responsive microgels. We demonstrated that the microgels were negatively charged, and the amounts of charge on the microgels were correlated with the SMA concentration in their formulation. The resulting microgels exhibited sensitivity to the pH and ionic strength of the surrounding environment. We demonstrated that DOX was efficiently loaded into the microgels and released in a controlled fashion via an ion-exchange mechanism. Our data revealed that the DOX release was influenced by the pH and ionic strength of the solution. Moreover, we designed a phenomenological mathematical model, based on a stretched exponential function, to quantitatively analyze the cumulative release of DOX. We found a linear correlation between the maximum release of DOX calculated from the model and the SMA concentration in the microgel formulation. The anti-tumor activity of the released DOX was assessed using a human chordoma cell line. Our data revealed that OPF-SMA microgels prolonged the cell killing effect of DOX.


Assuntos
Doxorrubicina/química , Géis/química , Microesferas , Adsorção , Morte Celular/efeitos dos fármacos , Química Farmacêutica , Preparações de Ação Retardada , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Liofilização , Fumaratos/química , Humanos , Concentração de Íons de Hidrogênio , Metacrilatos/química , Microscopia Confocal , Microscopia Eletrônica de Varredura , Modelos Químicos , Polietilenoglicóis/química , Soluções , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...