Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pattern Recognit ; 1322022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37089470

RESUMO

Information in digital mammogram images has been shown to be associated with the risk of developing breast cancer. Longitudinal breast cancer screening mammogram examinations may carry spatiotemporal information that can enhance breast cancer risk prediction. No deep learning models have been designed to capture such spatiotemporal information over multiple examinations to predict the risk. In this study, we propose a novel deep learning structure, LRP-NET, to capture the spatiotemporal changes of breast tissue over multiple negative/benign screening mammogram examinations to predict near-term breast cancer risk in a case-control setting. Specifically, LRP-NET is designed based on clinical knowledge to capture the imaging changes of bilateral breast tissue over four sequential mammogram examinations. We evaluate our proposed model with two ablation studies and compare it to three models/settings, including 1) a "loose" model without explicitly capturing the spatiotemporal changes over longitudinal examinations, 2) LRP-NET but using a varying number (i.e., 1 and 3) of sequential examinations, and 3) a previous model that uses only a single mammogram examination. On a case-control cohort of 200 patients, each with four examinations, our experiments on a total of 3200 images show that the LRP-NET model outperforms the compared models/settings.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37084039

RESUMO

Convolutional Neural Networks (CNNs) are traditionally trained solely using the given imaging dataset. Additional clinical information is often available along with imaging data but is mostly ignored in the current practice of data-driven deep learning modeling. In this work, we propose a novel deep curriculum learning method that utilizes radiomics information as a source of additional knowledge to guide training using customized curriculums. Specifically, we define a new measure, termed radiomics score, to capture the difficulty of classifying a set of samples. We use the radiomics score to enable a newly designed curriculum-based training scheme. In this scheme, the loss function component is weighted and initialized by the corresponding radiomics score of each sample, and furthermore, the weights are continuously updated in the course of training based on our customized curriculums to enable curriculum learning. We implement and evaluate our methods on a typical computer-aided diagnosis of breast cancer. Our experiment results show benefits of the proposed method when compared to a direct use of radiomics model, a baseline CNN without using any knowledge, the standard curriculum learning using data resampling, an existing difficulty score from self-teaching, and previous methods that use radiomics features as additional input to CNN models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...