Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(23): 63738-63753, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059947

RESUMO

This study assessed the emissions of gaseous pollutants and particle size distributed water-soluble organics (WSO) from a diesel vehicle fuelled with ultralow sulphur diesel (B0) and 10 (B10), 20 (B20), and 30% (B30) biodiesel blends in a chassis dynamometer tested under transient mode. Particulate emission sampling was carried out in an ultraviolet (UV) test chamber using a 10-stage impactor. Samples were grouped into three size fractions and analysed by gas chromatography-mass spectrometry. Increasing the biofuel ratio up to 30% in the fuel reduced WSO emissions by 20.9% in comparison with conventional diesel. Organic acids accounted for 82-89% of WSO in all tested fuels. Dicarboxylic acids were the most abundant compound class, followed by hydroxy, aromatic, and linear alkanoic acids. Correlations between compounds demonstrated that adding biodiesel to diesel fuel reduces the emissions of nitrogen oxides (NOx), benzene, toluene, ethylbenzene and xylenes (BTEX), methane (CH4), total and nonmethane hydrocarbons (THC and NMHC), and dicarboxylic and hydroxy acids, but increases emissions of carbon dioxide (CO2) and alkanoic and aromatic acids. Emissions of dicarboxylic and hydroxy acids were strongly correlated with the biodiesel content. WSO emissions of coarse and fine (1.0-10 µm) particles decreased with the increasing biofuel content in fuel blend. The total share of ultrafine (0.18-1.0 µm) and nanoparticles (< 0.18 µm) increased in WSOs emissions from B20 and B30 blends, when compared with petrodiesel. The biodiesel content also affected the chemical profile of WSO size fractions.


Assuntos
Poluentes Atmosféricos , Gases , Gases/análise , Biocombustíveis/análise , Tamanho da Partícula , Água/análise , Emissões de Veículos/análise , Gasolina/análise , Compostos Orgânicos/análise , Poluentes Atmosféricos/análise
2.
Environ Sci Pollut Res Int ; 26(12): 12470-12480, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30850980

RESUMO

The Brazilian legislation does not establish limits or methodology for the measurement of aldehydes in the exhaust of heavy diesel engines. No conclusive studies on aldehyde emissions by such engines have been found in the literature available. This work measured the aldehyde emissions from a P7 diesel cycle engine (EURO V), which was tested on an engine test bench according to ETC (European Transient Cycle) and ESC (European Stationary Cycle) cycles using fuels with 5, 7 and 20% v/v of biodiesel and 10 and 500 ppm of sulphur. The results showed that biodiesel participation in the mixture did not significantly affect the aldehyde emissions of the tested engine and that the emission level generated in the ETC cycle is higher than that obtained with the ESC cycle. The diesel content in the blend was weakly and negatively correlated with the pollutant emissions, and the inverse pattern was observed for biodiesel. This finding indicates that an increase in biodiesel content causes a slight increase in pollutant emissions. Regarding the sulphur content, positive correlations between the sulphur content and particulate matter, NOx, CO and total hydrocarbon emissions were observed. When comparing the test cycles, the results were significantly different, with higher values for the ETC cycle.


Assuntos
Aldeídos/análise , Biocombustíveis/análise , Emissões de Veículos/análise , Brasil , Poluentes Ambientais , Gasolina/análise , Hidrocarbonetos/análise , Material Particulado/análise , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...