Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(6): 4980-4999, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38517358

RESUMO

BACKGROUND: Modulated by differences in genetic and environmental factors, laboratory mice often show progressive weight gain, eventually leading to obesity and metabolic dyshomeostasis. Since the geroneuroprotector CMS121 has a positive effect on energy metabolism in a mouse model of type 2 diabetes, we investigated the potential of CMS121 to counteract the metabolic changes observed during the ageing process of wild type mice. METHODS: Control or CMS121-containing diets were supplied ad libitum for 6 months, and mice were sacrificed at the age of 7 months. Blood, adipose tissue, and liver were analyzed for glucose, lipids, and protein markers of energy metabolism. RESULTS: The CMS121 diet induced a 40% decrease in body weight gain and improved both glucose and lipid indexes. Lower levels of hepatic caspase 1, caspase 3, and NOX4 were observed with CMS121 indicating a lower liver inflammatory status. Adipose tissue from CMS121-treated mice showed increased levels of the transcription factors Nrf1 and TFAM, as well as markers of mitochondrial electron transport complexes, levels of GLUT4 and a higher resting metabolic rate. Metabolomic analysis revealed elevated plasma concentrations of short chain acylcarnitines and butyrate metabolites in mice treated with CMS121. CONCLUSIONS: The diminished de novo lipogenesis, which is associated with increased acetyl-CoA, acylcarnitine, and butyrate metabolite levels, could contribute to safeguarding not only the peripheral system but also the aging brain. By mimicking the effects of ketogenic diets, CMS121 holds promise for metabolic diseases such as obesity and diabetes, since these diets are hard to follow over the long term.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Envelhecimento , Butiratos/metabolismo , Butiratos/farmacologia , Dieta Hiperlipídica
2.
J Toxicol Environ Health A ; 87(4): 166-184, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38073470

RESUMO

Copper (Cu) is a naturally occurring metal with essential micronutrient properties. However, this metal might also pose increased adverse environmental and health risks due to industrial and agricultural activities. In Brazil, the maximum allowable concentration of Cu in drinking water is 2 mg/L. Despite this standard, the impact of such concentrations on aquatic organisms remains unexplored. This study aimed to evaluate the toxicity of CuSO4 using larval zebrafish at environmentally relevant concentrations. Zebrafish (Danio rerio) larvae at 72 hr post-fertilization (hpf) were exposed to nominal CuSO4 concentrations ranging from 0.16 to 48 mg/L to determine the median lethal concentration (LC50), established at 8.4 mg/L. Subsequently, non-lethal concentrations of 0.16, 0.32, or 1.6 mg/L were selected for assessing CuSO4 -induced toxicity. Morphological parameters, including body length, yolk sac area, and swim bladder area, were adversely affected by CuSO4 exposure, particularly at 1.6 mg/L (3.31 mm ±0.1, 0.192 mm2 ±0.01, and 0.01 mm2 ±0.05, respectively). In contrast, the control group exhibited values of 3.62 mm ±0.09, 0.136 mm2 ±0.013, and 0.3 mm2 ±0.06, respectively. Behavioral assays demonstrated impairments in escape response and swimming capacity, accompanied by increased levels of reactive oxygen species (ROS) and lipid peroxidation. In addition, decreased levels of non-protein thiols and reduced cellular viability were noted. Data demonstrated that exposure to CuSO4 at similar concentrations as those permitted in Brazil for Cu adversely altered morphological, biochemical, and behavioral endpoints in zebrafish larvae. This study suggests that the permissible Cu concentrations in Brazil need to be reevaluated, given the potential enhanced adverse health risks of exposure to environmental metal contamination.


Assuntos
Cobre , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Peixe-Zebra/fisiologia , Larva , Brasil , Dose Letal Mediana , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero
3.
Cell Chem Biol ; 31(2): 249-264.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944523

RESUMO

Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.


Assuntos
Ferroptose , Sobrecarga de Ferro , Animais , Camundongos , Caenorhabditis elegans , Ácido Oleico/farmacologia , Receptores Ativados por Proliferador de Peroxissomo , Sobrecarga de Ferro/tratamento farmacológico , Ferro , Éteres Fosfolipídicos
4.
Anal Biochem ; 687: 115445, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38135241

RESUMO

REAP+ is an enhanced version of the rapid, efficient, and practical (REAP) method designed for the isolation of nuclear fractions. This improved version, REAP+, enables fast and effective extraction of mitochondria, cytoplasm, and nuclei. The mechanical cell disruption process has been optimized to cerebral tissues, snap-frozen liver, and HT22 cells with remarkable fraction enrichment. REAP+ is well-suited for samples containing minimal protein quantities, such as mouse hippocampal slices. The method was validated by Western blot and marker enzyme activities, such as LDH and G6PDH for the cytoplasmic fraction and succinate dehydrogenase and cytochrome c oxidase for the mitochondrial fraction. One of the outstanding features of this method is its rapid execution, yielding fractions within 15 min, allowing for simultaneous preparation of multiple samples. In essence, REAP+ emerges as a swift, efficient, and practical technique for the concurrent isolation of nuclei, cytoplasm, and mitochondria from various cell types and tissues. The method would be suitable to study the multicompartment translocation of proteins, such as metabolic enzymes and transcription factors migrating from cytosol to the mitochondria and nuclei. Moreover, its compatibility with small samples, such as hippocampal slices, and its potential applicability to human biopsies, highlights the potential application in medical research.


Assuntos
Núcleo Celular , Mitocôndrias , Humanos , Camundongos , Animais , Fracionamento Celular/métodos , Mitocôndrias/metabolismo , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Frações Subcelulares/metabolismo
5.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628801

RESUMO

Huntington's disease (HD) is a neurodegenerative genetic disorder characterized by motor, psychiatric, cognitive, and peripheral symptoms without effective therapy. Evidence suggests that lifestyle factors can modulate disease onset and progression, and environmental enrichment (EE) has emerged as a potential approach to mitigate the progression and severity of neurodegenerative processes. Wild-type (WT) and yeast artificial chromosome (YAC) 128 mice were exposed to different EE conditions. Animals from cohort 1 were exposed to EE between postnatal days 21 and 60, and animals from cohort 2 were exposed to EE between postnatal days 60 and 120. Motor and non-motor behavioral tests were employed to evaluate the effects of EE on HD progression. Monoamine levels, hippocampal cell proliferation, neuronal differentiation, and dendritic arborization were also assessed. Here we show that EE had an antidepressant-like effect and slowed the progression of motor deficits in HD mice. It also reduced monoamine levels, which correlated with better motor performance, particularly in the striatum. EE also modulated neuronal differentiation in the YAC128 hippocampus. These results confirm that EE can impact behavior, hippocampal neuroplasticity, and monoamine levels in YAC128 mice, suggesting this could be a therapeutic strategy to modulate neuroplasticity deficits in HD. However, further research is needed to fully understand EE's mechanisms and long-term effects as an adjuvant therapy for this debilitating condition.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso , Doença de Huntington , Animais , Camundongos , Doença de Huntington/genética , Doença de Huntington/terapia , Aminas , Proliferação de Células , Terapia Combinada
6.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047807

RESUMO

db/db mice, which lack leptin receptors and exhibit hyperphagia, show disturbances in energy metabolism and are a model of obesity and type 2 diabetes. The geroneuroprotector drug candidate CMS121 has been shown to be effective in animal models of Alzheimer's disease and aging through the modulation of metabolism. Thus, the hypothesis was that CMS121 could protect db/db mice from metabolic defects and thereby reduce liver inflammation and kidney damage. The mice were treated with CMS121 in their diet for 6 months. No changes were observed in food and oxygen consumption, body mass, or locomotor activity compared to control db/db mice, but a 5% reduction in body weight was noted. Improved glucose tolerance and reduced HbA1c and insulin levels were also seen. Blood and liver triglycerides and free fatty acids decreased. Improved metabolism was supported by lower levels of fatty acid metabolites in the urine. Markers of liver inflammation, including NF-κB, IL-18, caspase 3, and C reactive protein, were lowered by the CMS121 treatment. Urine markers of kidney damage were improved, as evidenced by lower urinary levels of NGAL, clusterin, and albumin. Urine metabolomics studies provided further evidence for kidney protection. Mitochondrial protein markers were elevated in db/db mice, but CMS121 restored the renal levels of NDUFB8, UQCRC2, and VDAC. Overall, long-term CMS121 treatment alleviated metabolic imbalances, liver inflammation, and reduced markers of kidney damage. Thus, this study provides promising evidence for the potential therapeutic use of CMS121 in treating metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatite , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Receptores para Leptina/metabolismo , Fígado/metabolismo , Rim/metabolismo , Hepatite/metabolismo , Camundongos Endogâmicos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Leptina/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36103947

RESUMO

Methylglyoxal (MGO) is a reactive dicarbonyl compound formed as a byproduct of glycolysis. MGO is a major cell-permeant precursor of advanced glycation end products (AGEs), since it readily reacts with basic phospholipids and nucleotides, as well as amino acid residues of proteins, such as arginine, cysteine, and lysine. The AGEs production induced by MGO are widely associated with several pathologies, including neurodegenerative diseases. However, the impact of MGO metabolism and AGEs formation in the central nervous system (particularly in neurons, astrocytes and oligodendrocytes) on behavior and psychiatric diseases is not fully understood. Here, we briefly present background information on the biological activity of MGO in the central nervous system. It was gathered the available information on the role of MGO metabolism at the physiological processes, as well as at the neurobiology of psychiatry diseases, especially pain-related experiences, anxiety, depression, and cognition impairment-associated diseases. To clarify the role of MGO on behavior and associated diseases, we reviewed primarily the main findings at preclinical studies focusing on genetic and pharmacological approaches. Since monoamine neurotransmitter systems are implicated as pivotal targets on the pathophysiology and treatment of psychiatry and cognitive-related diseases, we also reviewed how MGO affects these neurotransmission systems and the implications of this phenomenon for nociception and pain; learning and cognition; and mood. In summary, this review highlights the pivotal role of glyoxalase 1 (Glo1) and MGO levels in modulating behavioral phenotypes, as well as related cellular and molecular signaling. Conclusively, this review signals dopamine as a new neurochemical MGO target, as well as highlights how MGO metabolism can modulate the pathophysiology and treatment of pain, psychiatric and cognitive-related diseases.


Assuntos
Transtornos Mentais , Aldeído Pirúvico , Humanos , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Cisteína , Dopamina , Lisina , Óxido de Magnésio , Dor , Arginina , Nucleotídeos
8.
Inflammation ; 45(5): 1895-1910, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35727396

RESUMO

The association between chronic kidney disease (CKD) and pulmonary pathophysiological changes is well stablished. Nevertheless, the effects of aerobic exercise (AE) on lungs of CKD need further clarification. Thus, Swiss mice were divided in control, AE, CKD, and CKD + AE groups. CKD was induced by 0.2% adenine intake during 8 weeks (4 weeks of CKD induction and 4 weeks of AE). AE consisted in running on treadmill, at moderate intensity, 30 min/day, 5 days/week, during 4 weeks. Twenty-four hours after the last training day, functional capacity test was performed, and 48 h after the test, mice were euthanized. CKD mice showed a significant increase in urine output, serum urea, and creatinine concentrations, and decreased body weight and urine density, besides oxidative damage (p = 0.044), edema area (p < 0.001), leukocyte infiltration (p = 0.040), and collagen area in lung tissue (p = 0.004). AE resulted in an increase of distance traveled (p = 0.049) and maximum speed (p = 0.046), increased activity of catalase (p = 0.031) and glutathione peroxidase (p = 0.048) in lungs, increased levels of nitric oxide (NOx) in serum (p = 0.001) and bronchoalveolar lavage fluid (p = 0.047), and decreased kidney histological injury (p = 0.018) of CKD mice. However, AE also increased oxidative damage (p = 0.003) and did not change collagen content or perivascular edema in lungs (p > 0.05) of CKD mice. Therefore, AE attenuated kidney injury and improved antioxidants defenses in lungs. Despite no significant changes in pulmonary damage, AE significantly improved physical performance in CKD mice.


Assuntos
Antioxidantes , Insuficiência Renal Crônica , Adenina/farmacologia , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Creatinina , Glutationa Peroxidase , Rim/patologia , Pulmão/metabolismo , Camundongos , Óxido Nítrico , Estresse Oxidativo , Desempenho Físico Funcional , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Ureia/farmacologia
9.
Metab Brain Dis ; 37(5): 1597-1608, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435610

RESUMO

Cholecalciferol deficiency has been associated with stress-related psychiatric disorders, particularly depression. Therefore, the present study investigated the antidepressant-like effect of cholecalciferol in female mice and the possible role of the serotonergic system in this response. The ability of cholecalciferol to elicit an antidepressant-like effect and to modulate serotonin levels in the hippocampus and prefrontal cortex of mice subjected to chronic unpredictable stress (CUS) was also investigated. The administration of cholecalciferol (2.5, 7.5, and 25 µg/kg, p.o.) for 7 days, similar to fluoxetine (10 mg/kg, p.o., serotonin reuptake inhibitor), reduced the immobility time in the tail suspension test, without altering the locomotor performance in the open-field test. Moreover, the administration of p-chlorophenylalanine methyl ester (PCPA - 100 mg/kg, i.p., for 4 days, a selective inhibitor of tryptophan hydroxylase, involved in the serotonin synthesis) abolished the antidepressant-like effect of cholecalciferol and fluoxetine in the tail suspension test, demonstrating the involvement of serotonergic system. Additionally, CUS protocol (21 days) induced depressive-like behavior in the tail suspension test and decreased serotonin levels in the prefrontal cortex and hippocampus of mice. Conversely, the administration of cholecalciferol and fluoxetine in the last 7 days of CUS protocol completely abolished the stress-induced depressive-like phenotype. Cholecalciferol was also effective to abrogate CUS-induced reduction on serotonin levels in the prefrontal cortex, but not in the hippocampus. Our results indicate that cholecalciferol has an antidepressant-like effect in mice by modulating the serotonergic system and support the assumption that cholecalciferol may have beneficial effects for the management of depression.


Assuntos
Fluoxetina , Serotonina , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Depressão/tratamento farmacológico , Feminino , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Elevação dos Membros Posteriores/psicologia , Humanos , Camundongos , Transmissão Sináptica
10.
Fish Physiol Biochem ; 48(1): 85-99, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34981327

RESUMO

We investigated whether dietary supplementation with Aurantiochytrium sp. meal, a DHA-rich source (docosahexaenoic acid, 22: 6 n-3), fed during long-term exposure to cold-suboptimal temperature (22 °C, P1), followed by short-term exposure to higher temperatures (28 °C, P2, and 33 °C, P3), would promote oxidative damage in Nile tilapia (Oreochromis niloticus). Two supplementation levels were tested: 1.0 g 100 g-1 (D1) and 4.0 g 100 g-1 (D4). A control diet, without the additive (D0, 0 g 100 g-1), and a positive control diet supplemented with cod liver oil (CLO) were also tested. The concentrations of DHA and total n-3 PUFAs in the CLO diet were similar to those found in diets D1 and D4, respectively. The parameters analyzed included hemoglobin (Hb), the antioxidant enzymes catalase, glutathione peroxidase, total glutathione, non-protein thiols, and the oxidative markers protein carbonyl and erythrocyte DNA damage. Nile tilapia did not present differences in Hb content, regardless of diet composition, but the temperature increase (P1 to P2) led to a higher Hb content. Likewise, the temperature increases promoted alterations in all antioxidant enzymes. The dietary supplementation with 1.0 g 100 g-1 Aurantiochytrium sp. meal after P1 caused minor DNA damage in Nile tilapia, demonstrating that the additive can safely be included in winter diets, despite its high DHA concentration.


Assuntos
Ciclídeos , Estresse Oxidativo , Temperatura , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Ciclídeos/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Ácidos Docosa-Hexaenoicos/administração & dosagem , Estramenópilas/química
11.
Nutr Neurosci ; 25(6): 1310-1324, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33314993

RESUMO

OBJECTIVES: Vitamin E has various functions in humans, including antioxidant, anti-inflammatory, anti-cancer, and anti-atherogenic actions, as well as direct effects on enzymatic activities and modulation of gene transcription. In addition to these functions, vitamin E is also important for the central nervous system, and its role in the prevention and/or treatment of some neurological diseases has been suggested. In particular, the role of vitamin E in the modulation of major depressive disorder (MDD) is an issue that has emerged in recent studies. Many factors have been implicated in the pathophysiology of this disorder, including inflammation, oxidative, and nitrosative stress. METHODS: This narrative review discusses the involvement of inflammation, oxidative, and nitrosative stress in the pathophysiology of MDD and presents clinical and preclinical studies that correlate vitamin E with this psychiatric disorder. RESULTS: We gathered evidence from clinical studies that demonstrated the relationship between low vitamin E status and MDD symptoms. Vitamin E has been reported to exert a beneficial influence on the oxidative and inflammatory status of individuals, factors that may account for the attenuation of depressive symptoms. Preclinical studies have reinforced the antidepressant-like response of vitamin E, and the mechanisms underlying its effect seem to be related to the modulation of oxidative stress and neuroinflammation. CONCLUSION: We suggest that vitamin E has potential to be used as an adjuvant for the management of MDD, but more studies are clearly needed to ascertain the efficacy of vitamin E for alleviating depressive symptoms.


Assuntos
Transtorno Depressivo Maior , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Estresse Oxidativo , Vitamina E/uso terapêutico
12.
Artigo em Inglês | MEDLINE | ID: mdl-34284103

RESUMO

The effect of increasing amounts (0%, 25%, 50%, 75%, and 100%) of dietary supplementation with an organic micromineral complex (Fe, Zn, Cu, Mn, and Se) on antioxidant defenses and mineral deposition in tissues of Nile tilapia juveniles was evaluated, where 100% supplementation represented the average adopted by the feed industry in Brazil. Fish (initial weight 23.93 ± 0.80 g) were fed until apparent satiation twice a day for 56 days. The maximum deposition of Fe and Zn in the hepatopancreas occurred in fish given approximately 50% supplementation, whereas the deposition of Mn and Se increased linearly with the inclusion of the complex. The activity of catalase and superoxide dismutase in the hepatopancreas decreased in fish fed the 50% dose, when compared to those not receiving mineral supplementation or those receiving higher doses. Glutathione peroxidase (GPx) activity in the hepatopancreas increased as the dietary Se concentration increased. However, the concentration of metallothionein in the hepatopancreas showed an inverse relationship to the increase in dietary supplementation of the organic mineral complex. There was no relationship between the doses of organic micromineral supplementation and the activities of GPx, reduced glutathione, non-protein thiols, or protein carbonylation. However, diets supplemented with 50% to 100% promoted greater GPx activity when compared to the 0% supplemented diet. Supplementation with intermediate doses of organic microminerals, approximately 50% of that used in commercial tilapia diets, promoted the homeostasis of metal metabolism, especially for Fe and Zn.


Assuntos
Ração Animal , Antioxidantes/metabolismo , Ciclídeos/fisiologia , Suplementos Nutricionais , Metalotioneína/metabolismo , Animais , Antioxidantes/química , Brasil , Catalase/metabolismo , Ciclídeos/metabolismo , Dieta , Glutationa , Glutationa Peroxidase/metabolismo , Hepatopâncreas/metabolismo , Ferro/química , Masculino , Metalotioneína/química , Minerais/metabolismo , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Zinco/química
13.
Cytokine ; 140: 155401, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33508652

RESUMO

BACKGROUND AND OBJECTIVE: Sepsis is a potentially deadly organic dysfunction, and one of the main causes of mortality in intensive care units (ICU). Aerobic exercise (AE) is a preventive intervention in the establishment of inflammatory conditions, such as chronic lung diseases, but its effects on sepsis remain unclear. Therefore, this study aimed to evaluate the effects of AE on health condition, mortality, inflammation, and oxidative damage in an experimental model of pneumosepsis induced by Klebsiella pneumoniae (K.p). METHODS: Animals were randomly allocated to Control; Exercise (EXE); Pneumosepsis (PS) or Exercise + Pneumosepsis (EPS) groups. Exercised animals were submitted to treadmill exercise for 2 weeks, 30 min/day, prior to pneumosepsis induced by K.p tracheal instillation. RESULTS: PS produced a striking decrease in the health condition leading to massive death (85%). AE protected mice, as evidenced by better clinical scores and increased survival (70%). AE alleviated sickness behavior in EPS mice as evaluated in the open field test, and inflammation (nitrite + nitrate, TNF-α and IL-1ß levels) in broncoalveolar fluid. Catalase activity, oxidative damage to proteins and DNA was increased by sepsis and prevented by exercise. CONCLUSION: Overall, the beneficial effects of exercise in septic animals encompassed a markedly improved clinical score and decreased mortality, along with lower inflammation markers, less DNA and protein damage, as well as preserved antioxidant enzyme activity. Neural network risk analysis revealed exercise had a considerable effect on the overall health condition of septic mice.


Assuntos
Dano ao DNA/fisiologia , DNA/metabolismo , Condicionamento Físico Animal/fisiologia , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Sepse/metabolismo , Sepse/fisiopatologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos , Estresse Oxidativo/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Mol Neurobiol ; 58(2): 735-749, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33011857

RESUMO

Methylglyoxal (MGO) is an endogenous toxin, mainly produced as a by-product of glycolysis that has been associated to aging, Alzheimer's disease, and inflammation. Cell culture studies reported that MGO could impair the glyoxalase, thioredoxin, and glutathione systems. Thus, we investigated the effect of in vivo MGO administration on these systems, but no major changes were observed in the glyoxalase, thioredoxin, and glutathione systems, as evaluated in the prefrontal cortex and the hippocampus of mice. A previous study from our group indicated that MGO administration produced learning/memory deficits and depression-like behavior. Confirming these findings, the tail suspension test indicated that MGO treatment for 7 days leads to depression-like behavior in three different mice strains. MGO treatment for 12 days induced working memory impairment, as evaluated in the Y maze spontaneous alternation test, which was paralleled by low dopamine and serotonin levels in the cerebral cortex. Increased DARPP32 Thr75/Thr34 phosphorylation ratio was observed, suggesting a suppression of phosphatase 1 inhibition, which may be involved in behavioral responses to MGO. Co-treatment with a dopamine/noradrenaline reuptake inhibitor (bupropion, 10 mg/kg, p.o.) reversed the depression-like behavior and working memory impairment and restored the serotonin and dopamine levels in the cerebral cortex. Overall, the cerebral cortex monoaminergic system appears to be a preferential target of MGO toxicity, a new potential therapeutic target that remains to be addressed.


Assuntos
Depressão/fisiopatologia , Inibidores da Captação de Dopamina/farmacologia , Dopamina/deficiência , Memória de Curto Prazo , Norepinefrina/metabolismo , Aldeído Pirúvico/efeitos adversos , Animais , Bupropiona/farmacologia , Dopamina/metabolismo , Feminino , Glutationa/metabolismo , Imobilização , Memória de Curto Prazo/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Aldeído Pirúvico/administração & dosagem , Serotonina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Acta Neurobiol Exp (Wars) ; 80(4): 364-374, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33350989

RESUMO

Memory impairment is a feature of several diseases and detrimental as aging population have increased worldwide. Sustained advanced glycation end products (AGEs) receptor (RAGE) activation triggers the production of reactive oxygen species and inflammatory response, leading to neuronal dysfunction and neurodegenerative disorders. Methylglyoxal (MGO) is the most relevant and reactive glycating agent in vivo, leading to the formation of AGEs. Here, we investigated the role of RAGE on the memory impairment induced by MGO. Swiss female mice were treated for 11 days with MGO, FPS­ZM1 (a high­affinity RAGE antagonist), or the combination of both. Locomotor activity was not impaired by the treatments, as evaluated by the open field and spontaneous alternation test. MGO treatment impaired short­ and long­term spatial memory in the object location task, caused deficits on the short­term aversive memory in the step­down inhibitory avoidance task, and decreased working memory performance as evaluated by the Y­maze spontaneous alternation test. FPS­ZM1 treatment abolished deficits on the short­term aversive memory and working memory, but was unable to prevent the impairment in short­term or long­term spatial memory. Since the addition of RAGE antagonist in co­treatment with MGO protected mice from the aversive and working memory deficits, AGEs generated by the MGO treatment would be involved in the memory impairment due to RAGE activation. Therefore, further studies are required to establish the involvement of RAGE in the MGO­induced memory impairment. Nevertheless, our results suggested FPS­ZM1 treatment as a promising new therapeutic strategy to prevent cognitive dysfunction caused by dicarbonyl stress, further investigation is required to confirm our findings.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Produtos Finais de Glicação Avançada/farmacologia , Transtornos da Memória/prevenção & controle , Neurônios/efeitos dos fármacos , Aldeído Pirúvico/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Transtornos da Memória/tratamento farmacológico , Camundongos
16.
Neurochem Res ; 45(12): 2868-2883, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32968860

RESUMO

Recent evidence suggests that young rodents submitted to high fructose (FRU) diet develop metabolic, and cognitive dysfunctions. However, it remains unclear whether these detrimental effects of FRU intake can also be observed in middle-aged mice. Nine months-old C57BL/6 female mice were fed with water (Control) or 10% FRU in drinking water during 12 weeks. After that, metabolic, and neurochemical alterations were evaluated, focusing on neurotransmitters, and antioxidant defenses. Behavioral parameters related to motor activity, memory, anxiety, and depression were also evaluated. Mice consuming FRU diet displayed increased water, and caloric intake, resulting in weight gain, which was partially compensated due to decreased food pellet intake. FRU fed animals displayed increased plasma glucose, and cholesterol levels, which was not observed in overnight-fasted animals. Superoxide dismutase (SOD), and catalase (CAT) activities were markedly decreased in the prefrontal cortex of animals receiving FRU diet, while glutathione peroxidase (GPx) slightly increased. Liver (lower GPx), striatum (higher SOD and lower CAT), and hippocampus (no changes) were less impacted. No changes were observed in glutathione reductase, and thioredoxin reductase activities, two ancillary enzymes for peroxide detoxification. FRU intake did not alter serotonin, dopamine, and norepinephrine levels in the hippocampus, prefrontal cortex, and striatum. No significant alterations were observed in working, and short-term spatial memory; and in anxiety- and depressive-like behaviors in animals treated with FRU. Increased locomotor activity was observed in FRU-fed middle-aged mice, as evaluated in the open field, elevated plus-maze, Y maze, and object location tasks. Overall, these results demonstrate that high FRU consumption can disturb antioxidant defenses, and increase locomotor activity in middle-aged mice, open the opportunity for further studies to address the underlying mechanisms related to these findings.


Assuntos
Catalase/metabolismo , Frutose/farmacologia , Locomoção/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Teste de Labirinto em Cruz Elevado , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Teste de Campo Aberto/efeitos dos fármacos
17.
Pharmacol Biochem Behav ; 198: 173018, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827504

RESUMO

Voluntary wheel running is widely used as a physical activity (PA) model in rodents, but most studies investigate the beneficial effects of this intervention in socially isolated mice. Social isolation stress (SIS) is associated with vulnerability to oxidative stress and reduced mitochondrial activity. Thus, the aim of this study was to investigate the effects of free access to a running wheel for 21 days on the various markers of the cellular redox/antioxidant status as well as mitochondrial function of mice subjected to SIS or maintained in groups of 3 in the homecage. SIS increased thiobarbituric acid reactive substance (TBARS) levels in the cerebral cortex, and PA intervention was not able to reverse such alteration. PA reduced TBARS levels in the liver of grouped mice and gastrocnemius of socially isolated mice. PA increased nonprotein thiol (NPSH) levels in the cerebral cortex of grouped mice. Furthermore, socially isolated mice presented lower glutathione peroxidase (GPx) activity in the cerebellum and gastrocnemius, and glutathione reductase (GR) activity in the cerebral cortex and liver. By contrast, SIS induced higher GPx activity in the cerebral cortex and heart. PA reduced GPx (cerebral cortex) and GR (cerebral cortex and liver) activities of socially isolated mice. SIS caused higher activity of mitochondrial complexes I and II in the cerebral cortex, and the PA paradigm was not able to alter this effect. Interestingly, the PA produced antidepressant-like effect at both SIS and control groups. In conclusion, the results showed the influence of SIS for the effects of PA on the antioxidant status, but not on the mitochondrial function and emotionality.


Assuntos
Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Atividade Motora , Isolamento Social , Estresse Psicológico/metabolismo , Animais , Comportamento Animal , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Abrigo para Animais , Peroxidação de Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Mitocôndrias/enzimologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal , Compostos de Sulfidrila/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
18.
Food Res Int ; 136: 109441, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846544

RESUMO

Processed meats are classified by the International Agency for Research on Cancer as category 1 because their consumption increase the incidence of colorectal and stomach cancers. Meat processing widely employs nitrite and sorbate as preservatives. When these preservatives are concomitantly used in non-compliant processes, they may react and produce the mutagen 2-methyl-1,4-dinitro-pyrrole (DNMP). This study aimed to evaluate the ability of different bacteria isolated from food matrices to biodegrade DNMP in in vitro reactions and in a processed meat model. A possible mechanism of biodegradation was also tested. In vitro experiments were performed in two steps. In the first one, only one strain out of 13 different species did not interact with DNMP. In the following step, an empirical conversion factor was calculated to assess the conversion of DNMP to 4-amino-2-methyl-1-nitro-pyrrole by the strains. The most efficient strains were Staphylococcus xylosus LYOCARNI SXH-01, Lactobacillus fermentum LB-UFSC 0017, and Lactobacillus casei LB-UFSC 0019, which yielded conversion factors of 0.62, 0.60, and 0.43, respectively. Thus, such strains were individually added to the processed meat model and completely degraded the DNMP. Moreover, S. xylosus degraded DNMP in less than 30 min. The enzymatic mechanism was evaluated using its cell-free extract. It showed that, in the aerobic system, reduction rates were 30.321 and 22.411 nmol/mg of protein/min using NADH and NADPH, respectively. A DNMP reductase was assigned to the extract and a potential presence of an oxygen insensitive nitroreductase type I B was considered. Thus, biotechnological processes may be an efficient strategy to eliminate the DNMP from meat products and to increase food safety.


Assuntos
Produtos da Carne , Mutagênicos , Carne , Produtos da Carne/análise , Pirróis , Staphylococcus
19.
Neurotoxicology ; 80: 144-154, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738267

RESUMO

Exposure to fungicide ziram (zinc dimethyldithiocarbamate) has been associated with increased incidence of Parkinson's disease (PD). We recently demonstrated that the intranasal (i.n.) administration of sodium dimethyldithiocarbamate (NaDMDC, a more soluble salt than ziram) induces PD-like behavioral and neurochemical alterations in mice. We now investigated the putative neuroprotective effects of melatonin on behavioral dificits and neurochemical alterations induced by i.n. NaDMDC. Melatonin treatment (3, 10 or 30 mg/kg, i.p.) was given 1 h before NaDMDC administration (1 mg/nostril) during 4 consecutive days and we evaluated early (up to 7 days) and late (up to 35 days) NaDMDC-induced behavioral and neurochemical alterations. Melatonin treatment protected against early motor and general neurological impairments observed in the open field and neurological score of severity, respectively, and late deficits in rotarod test. Melatonin prevented the NaDMDC-induced alterations in the striatal tyrosine hydroxylase immunocontent. Melatonin also protected against increased levels of oxidative stress markers (4-hydroxynonenal and 3-nitrotyrosine) in the striatum, as well as the NaDMDC-induced increase of 4-hydroxynonenal and TNF, markers of oxidative stress and inflammation, respectively, in the olfactory bulb. These results further detail the mechanisms underlying NaDMDC toxicity and demonstrate the neuroprotective effects of melatonin against the neuronal damage induced by NaDMDC.


Assuntos
Encéfalo/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Administração Intranasal , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Dimetilditiocarbamato , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/fisiopatologia , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
20.
J Nutr Biochem ; 85: 108459, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32745879

RESUMO

Stress-related disorders, such as depression and anxiety, present marked deficits in behavioral and cognitive functions related to reward. These are highly prevalent disabling conditions with high social and economic costs. Furthermore, a significant percentage of affected individuals cannot benefit from clinical intervention, opening space for new treatments. Although the literature data have reported limited and variable results regarding oxidative stress-related endpoints in stress-related disorders, the possible neuroprotective effect of antioxidant compounds, such as ascorbic acid (vitamin C), emerges as a possible therapy strategy for psychiatric diseases. Here, we briefly present background information on biological activity of ascorbic acid, particularly functions related to the CNS homeostasis. Additionaly, we reviewed the available information on the role of ascorbic acid in stress-related diseases, focusing on supplementation and depletion studies. The vitamin C deficiency is widely associated to stress-related diseases. Although the efficacy of this vitamin in anxiety spectrum disorders is less stablished, several studies showed that ascorbic acid supplementation produces antidepressant effect and improves mood. Interestingly, the modulation of monoaminergic and glutamatergic neurotransmitter systems is postulated as pivotal target for the antidepressant and anxiolytic effects of this vitamin. Given that ascorbic acid supplementation produces fast therapeutic response with low toxicity and high tolerance, it can be considered as a putative candidate for the treatment of mood and anxiety disorders, especially those that are refractory to current treatments. Herein, the literature was reviewed considering the potential use of ascorbic acid as an adjuvant in the treatment of anxiety and depression.


Assuntos
Antioxidantes/uso terapêutico , Ansiedade/tratamento farmacológico , Ácido Ascórbico/uso terapêutico , Depressão/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Antioxidantes/farmacologia , Transtornos de Ansiedade/tratamento farmacológico , Ácido Ascórbico/farmacologia , Transtorno Depressivo/tratamento farmacológico , Humanos , Fármacos Neuroprotetores/farmacologia , Estresse Psicológico/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...