Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 52(3): 647-656, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38036895

RESUMO

The proper formation of the vertebrate embryonic heart relies on various mechanical forces which determine its form and function. Measuring these forces at the microscale of the embryo is a challenge. We propose a new tool utilizing high-resolution optical elastography and stiffness measurements of surrounding tissues to non-invasively track the changes in the pressure exerted by the heart on the neighboring yolk, as well as changes in contractile patterns during early cardiac growth in-vivo, using the zebrafish embryo as a model system. Cardiac development was characterized every three hours from 24 hours post-fertilization (hpf) to 30 hpf and compared between wildtype fish and those treated with MS-222, a commonly used fish anesthetic that decreases cardiac contractility. Wildtype embryos from 24 to 30 hpf showed an average yolk indentation pressure of 0.32 mmHg to 0.41 mmHg, respectively. MS-222 treated embryos showed an average yolk indentation pressure of 0.22 mmHg to 0.29 mmHg. Yolk indentation pressure between control and treated embryos at 24 hpf and 30 hpf showed a significant difference (p < 0.05). Our method allowed for contractility and pressure evaluation at these early developmental stages, which have not been previously reported in published literature, regardless of sample or imaging modality. This research could lead to a better understanding of heart development and improved diagnostic tools for congenital heart disease.


Assuntos
Aminobenzoatos , Técnicas de Imagem por Elasticidade , Peixe-Zebra , Animais , Embrião não Mamífero/diagnóstico por imagem , Coração/diagnóstico por imagem
2.
J Biophotonics ; 16(3): e202200238, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36336921

RESUMO

We evaluated the elasticity of live tissues of zebrafish embryos using label-free optical elastography. We employed a pair of custom-built elastic microcantilevers to gently compress a zebrafish embryo and used optical-tracking analysis to obtain the induced internal strain. We then built a finite element method (FEM) model and matched the strain with the optical analysis. The elastic moduli were found by minimizing the root-mean-square errors between the optical and FEM analyses. We evaluated the average elastic moduli of a developing somite, the overlying ectoderm, and the underlying yolk of seven zebrafish embryos during the early somitogenesis stages. The estimation results showed that the average elastic modulus of the somite increased from 150 to 700 Pa between 4- and 8-somite stages, while those of the ectoderm and the yolk stayed between 100 and 200 Pa, and they did not show significant changes. The result matches well with the developmental process of somitogenesis reported in the literature. This is among the first attempts to quantify spatially-resolved elasticity of embryonic tissues from optical elastography.


Assuntos
Técnicas de Imagem por Elasticidade , Peixe-Zebra , Animais , Técnicas de Imagem por Elasticidade/métodos , Microscopia , Desenvolvimento Embrionário , Módulo de Elasticidade
3.
Dev Biol ; 309(2): 169-79, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17689522

RESUMO

As the vertebrate myotome is generated, myogenic precursor cells undergo extensive and coordinated movements as they differentiate into properly positioned embryonic muscle fibers. In the zebrafish, the "adaxial" cells adjacent to the notochord are the first muscle precursors to be specified. After initially differentiating into slow-twitch myosin-expressing muscle fibers, these cells have been shown to undergo a remarkable radial migration through the lateral somite, to populate the superficial layer of slow-twitch muscle of the mature myotome. Here we characterize an earlier set of adaxial cell behaviors; the transition from a roughly 4x5 array of cuboidal cells to a 1x20 stack of elongated cells, prior to the migration event. We find that adaxial cells display a highly stereotypical series of behaviors as they undergo this rearrangement. Furthermore, we show that the actin regulatory molecule, Cap1, is specifically expressed in adaxial cells and is required for the progression of these behaviors. The requirement of Cap1 for a cellular apical constriction step is reminiscent of similar requirements of Cap during apical constriction in Drosophila development, suggesting a conservation of gene function for a cell biological event critical to many developmental processes.


Assuntos
Proteínas de Transporte/metabolismo , Células Musculares/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Padronização Corporal , Movimento Celular , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Notocorda/fisiologia , Somitos/fisiologia , Peixe-Zebra/embriologia
4.
Dev Dyn ; 234(4): 992-6, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16222715

RESUMO

Gene knockout studies of Krüppel-like factors (KLFs) in mice have shown essential roles in organogenesis. A screen for KLF family members in zebrafish identified many KLFs. One of these, zebrafish KLF4 (zKLF4) is the homologue of neptune, a Xenopus laevis KLF. zKLF4 is expressed from approximately 80% epiboly a patch of dorsal/anterior mesendodermal cells called the pre-polster and, subsequently, in the polster and hatching gland. Here we investigate the function of zKLF4 using morpholino-based antisense oligonucleotides. Knockdown of zKLF4 resulted in complete absence of hatching gland formation and subsequent hatching in zebrafish. In addition, there was early knockdown of expression of the pre-polster/anterior mesendoderm markers CatL, cap1, and BMP4. These results indicate zKLF4 is expressed within the pre-polster, an early mesendodermal site, and that it plays a critical role in the differentiation of these cells into hatching gland cells.


Assuntos
Diferenciação Celular/fisiologia , Endoderma/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Endoderma/metabolismo , Hibridização In Situ , Fator 4 Semelhante a Kruppel , Oligonucleotídeos Antissenso , Peixe-Zebra/metabolismo
5.
Curr Biol ; 14(18): 1632-8, 2004 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-15380064

RESUMO

Although our understanding of the regulation of cellular actin and its control during the development of invertebrates is increasing, the question as to how such actin dynamics are regulated differentially across the vertebrate embryo to effect its relatively complex morphogenetic cell movements remains poorly understood. Intercellular signaling that provides spatial and temporal cues to modulate the subcellular localization and activity of actin regulatory molecules represents one important mechanism. Here we explore whether the localized gene expression of specific actin regulatory molecules represents another developmental mechanism. We have identified a cap1 homolog and a novel guanine nucleotide exchange factor (GEF), quattro (quo), that share a restricted gene expression domain in the anterior mesendoderm of the zebrafish gastrula. Each gene is required for specific cellular behaviors during the anterior migration of this tissue; furthermore, cap1 regulates cortical actin distribution specifically in these cells. Finally, although cap1 and quo are autonomously required for the normal behaviors of these cells, they are also nonautonomously required for convergence and extension movements of posterior tissues. Our results provide direct evidence for the deployment of developmentally restricted actin-regulatory molecules in the control of morphogenetic cell movements during vertebrate development.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Actinas/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica , DNA Complementar/genética , Bases de Dados Genéticas , Proteínas Fúngicas , Gástrula/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Dados de Sequência Molecular , Morfogênese , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/genética
6.
Development ; 130(23): 5851-60, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14573513

RESUMO

A class of recessive lethal zebrafish mutations has been identified in which normal skeletal muscle differentiation is followed by a tissue-specific degeneration that is reminiscent of the human muscular dystrophies. Here, we show that one of these mutations, sapje, disrupts the zebrafish orthologue of the X-linked human Duchenne muscular dystrophy (DMD) gene. Mutations in this locus cause Duchenne or Becker muscular dystrophies in human patients and are thought to result in a dystrophic pathology through disconnecting the cytoskeleton from the extracellular matrix in skeletal muscle by reducing the level of dystrophin protein at the sarcolemma. This is thought to allow tearing of this membrane, which in turn leads to cell death. Surprisingly, we have found that the progressive muscle degeneration phenotype of sapje mutant zebrafish embryos is caused by the failure of embryonic muscle end attachments. Although a role for dystrophin in maintaining vertebrate myotendinous junctions (MTJs) has been postulated previously and MTJ structural abnormalities have been identified in the Dystrophin-deficient mdx mouse model, in vivo evidence of pathology based on muscle attachment failure has thus far been lacking. This zebrafish mutation may therefore provide a model for a novel pathological mechanism of Duchenne muscular dystrophy and other muscle diseases.


Assuntos
Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Humanos , Substâncias Macromoleculares , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Dados de Sequência Molecular , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Musculares/classificação , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Fenótipo , Filogenia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sarcolema/metabolismo , Alinhamento de Sequência , Transgenes , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/classificação , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...