Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077935

RESUMO

Avian haemosporidian parasites (Haemosporida, Apicomplexa) are globally distributed and infect birds of many orders. These pathogens have been much investigated in domestic and wild passeriform birds, in which they are relatively easy to access. In birds belonging to other orders, including owls (order Strigiformes), these parasites have been studied fragmentarily. Particularly little is known about the exo-erythrocytic development of avian haemosporidians. The goal of this study was to gain new knowledge about the parasites infecting owls in Europe and investigate their exo-erythrocytic stages. Tissue samples of 121 deceased owls were collected in Austria and Lithuania, and examined using polymerase chain reactions (PCR), histology, and chromogenic in situ hybridization (CISH). PCR-based diagnostics showed a total prevalence of 73.6%, revealing two previously unreported Haemoproteus and five novel Leucocytozoon lineages. By CISH and histology, meronts of several Leucocytozoon lineages (lASOT06, lSTAL5, lSTAL7) were discovered in the brains, heart muscles, and kidneys of infected birds. Further, megalomeronts of Haemoproteus syrnii (lineage hSTAL2) were discovered. This study contributes new knowledge to a better understanding of the biodiversity of avian haemosporidian parasites infecting owls in Europe, provides information on tissue stages of the parasites, and calls for further research of these under-investigated pathogens relevant to bird health.

2.
Mov Ecol ; 9(1): 61, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895360

RESUMO

BACKGROUND: The timing of migration for herbivorous migratory birds is thought to coincide with spring phenology as emerging vegetation supplies them with the resources to fuel migration, and, in species with a capital breeding strategy also provides individuals with energy for use on the breeding grounds. Individuals with very long migration distances might however have to trade off between utilising optimal conditions en route and reaching the breeding grounds early, potentially leading to them overtaking spring on the way. Here, we investigate whether migration distance affects how closely individually tracked Eurasian wigeons follow spring phenology during spring migration. METHODS: We captured wigeons in the Netherlands and Lithuania and tracked them throughout spring migration to identify staging sites and timing of arrival. Using temperature-derived indicators of spring phenology, we investigated how maximum longitude reached and migration distance affected how closely wigeons followed spring. We further estimated the impact of tagging on wigeon migration by comparing spring migratory timing between tracked individuals and ring recovery data sets. RESULTS: Wigeons migrated to locations between 300 and 4000 km from the capture site, and migrated up to 1000 km in a single day. We found that wigeons migrating to more north-easterly locations followed spring phenology more closely, and increasingly so the greater distance they had covered during migration. Yet we also found that despite tags equalling only around 2% of individual's body mass, individuals were on average 11-12 days slower than ring-marked individuals from the same general population. DISCUSSION: Overall, our results suggest that migratory strategy can vary dependent on migration distance within species, and even within the same migratory corridor. Individual decisions thus depend not only on environmental cues, but potentially also trade-offs made during later life-history stages.

3.
Proc Biol Sci ; 285(1884)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111595

RESUMO

The relative contributions of genetic and social factors in shaping the living world are a crucial question in ecology. The annual migration of birds to their wintering grounds and back provides significant knowledge in this field of research. Migratory movements are predominantly genetically determined in passerine birds, while in large soaring birds, it is presumed that social (cultural) factors play the largest role. In this study, we show that genetic factors in soaring birds are more important than previously assumed. We used global positioning system (GPS)-telemetry to compare the autumn journeys and wintering ranges of two closely related large raptorial bird species, the greater spotted eagle Clanga clanga and the lesser spotted eagle Clanga pomarina, and hybrids between them. The timing of migration in hybrids was similar to that of one parental species, but the wintering distributions and home range sizes were similar to those of the other. Tracking data were supported by habitat suitability modelling, based on GPS fixes and ring recoveries. These results suggest a strong genetic influence on migration strategy via a trait-dependent dominance effect, although we cannot rule out the contribution of social interactions.


Assuntos
Migração Animal , Águias/fisiologia , Hibridização Genética , Animais , Águias/genética , Feminino , Voo Animal , Sistemas de Informação Geográfica , Masculino , Telemetria/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...